57,121 research outputs found

    Coxeter groups and random groups

    Full text link
    For every dimension d, there is an infinite family of convex co-compact reflection groups of isometries of hyperbolic d-space --- the superideal (simplicial and cubical) reflection groups --- with the property that a random group at any density less than a half (or in the few relators model) contains quasiconvex subgroups commensurable with some member of the family, with overwhelming probability.Comment: 18 pages, 14 figures; version 2 incorporates referee's correction

    Covering Partial Cubes with Zones

    Full text link
    A partial cube is a graph having an isometric embedding in a hypercube. Partial cubes are characterized by a natural equivalence relation on the edges, whose classes are called zones. The number of zones determines the minimal dimension of a hypercube in which the graph can be embedded. We consider the problem of covering the vertices of a partial cube with the minimum number of zones. The problem admits several special cases, among which are the problem of covering the cells of a line arrangement with a minimum number of lines, and the problem of finding a minimum-size fibre in a bipartite poset. For several such special cases, we give upper and lower bounds on the minimum size of a covering by zones. We also consider the computational complexity of those problems, and establish some hardness results

    K1,3K_{1,3}-covering red and blue points in the plane

    Get PDF
    We say that a finite set of red and blue points in the plane in general position can be K1,3K_{1,3}-covered if the set can be partitioned into subsets of size 44, with 33 points of one color and 11 point of the other color, in such a way that, if at each subset the fourth point is connected by straight-line segments to the same-colored points, then the resulting set of all segments has no crossings. We consider the following problem: Given a set RR of rr red points and a set BB of bb blue points in the plane in general position, how many points of RBR\cup B can be K1,3K_{1,3}-covered? and we prove the following results: (1) If r=3g+hr=3g+h and b=3h+gb=3h+g, for some non-negative integers gg and hh, then there are point sets RBR\cup B, like {1,3}\{1,3\}-equitable sets (i.e., r=3br=3b or b=3rb=3r) and linearly separable sets, that can be K1,3K_{1,3}-covered. (2) If r=3g+hr=3g+h, b=3h+gb=3h+g and the points in RBR\cup B are in convex position, then at least r+b4r+b-4 points can be K1,3K_{1,3}-covered, and this bound is tight. (3) There are arbitrarily large point sets RBR\cup B in general position, with r=b+1r=b+1, such that at most r+b5r+b-5 points can be K1,3K_{1,3}-covered. (4) If br3bb\le r\le 3b, then at least 89(r+b8)\frac{8}{9}(r+b-8) points of RBR\cup B can be K1,3K_{1,3}-covered. For r>3br>3b, there are too many red points and at least r3br-3b of them will remain uncovered in any K1,3K_{1,3}-covering. Furthermore, in all the cases we provide efficient algorithms to compute the corresponding coverings.Comment: 29 pages, 10 figures, 1 tabl

    On the Parikh-de-Bruijn grid

    Full text link
    We introduce the Parikh-de-Bruijn grid, a graph whose vertices are fixed-order Parikh vectors, and whose edges are given by a simple shift operation. This graph gives structural insight into the nature of sets of Parikh vectors as well as that of the Parikh set of a given string. We show its utility by proving some results on Parikh-de-Bruijn strings, the abelian analog of de-Bruijn sequences.Comment: 18 pages, 3 figures, 1 tabl

    Finding tight Hamilton cycles in random hypergraphs faster

    Full text link
    In an rr-uniform hypergraph on nn vertices a tight Hamilton cycle consists of nn edges such that there exists a cyclic ordering of the vertices where the edges correspond to consecutive segments of rr vertices. We provide a first deterministic polynomial time algorithm, which finds a.a.s. tight Hamilton cycles in random rr-uniform hypergraphs with edge probability at least Clog3n/nC \log^3n/n. Our result partially answers a question of Dudek and Frieze [Random Structures & Algorithms 42 (2013), 374-385] who proved that tight Hamilton cycles exists already for p=ω(1/n)p=\omega(1/n) for r=3r=3 and p=(e+o(1))/np=(e + o(1))/n for r4r\ge 4 using a second moment argument. Moreover our algorithm is superior to previous results of Allen, B\"ottcher, Kohayakawa and Person [Random Structures & Algorithms 46 (2015), 446-465] and Nenadov and \v{S}kori\'c [arXiv:1601.04034] in various ways: the algorithm of Allen et al. is a randomised polynomial time algorithm working for edge probabilities pn1+εp\ge n^{-1+\varepsilon}, while the algorithm of Nenadov and \v{S}kori\'c is a randomised quasipolynomial time algorithm working for edge probabilities pClog8n/np\ge C\log^8n/n.Comment: 17 page
    corecore