26 research outputs found

    Product Dimension of Forests and Bounded Treewidth Graphs

    Full text link
    The product dimension of a graph G is defined as the minimum natural number l such that G is an induced subgraph of a direct product of l complete graphs. In this paper we study the product dimension of forests, bounded treewidth graphs and k-degenerate graphs. We show that every forest on n vertices has a product dimension at most 1.441logn+3. This improves the best known upper bound of 3logn for the same due to Poljak and Pultr. The technique used in arriving at the above bound is extended and combined with a result on existence of orthogonal Latin squares to show that every graph on n vertices with a treewidth at most t has a product dimension at most (t+2)(logn+1). We also show that every k-degenerate graph on n vertices has a product dimension at most \ceil{8.317klogn}+1. This improves the upper bound of 32klogn for the same by Eaton and Rodl.Comment: 12 pages, 3 figure

    Note on set representation of bounded degree hypergaphs

    Full text link
    In their classical paper, Erd\H{o}s, Goodman and Posa studied the representation of a graph by vertex set [n][n] with a family of subsets S1,…,SnS_1,\dots, S_n with the property that {i,j}\{i,j\} is an edge iff Si∩Sj≠∅S_i\cap S_j\neq \emptyset. In this note, we consider a similar representation of bounded degree rr-uniform hypergraphs and establish some bounds for a corresponding problem

    On k-Equivalence Domination in Graphs

    Get PDF
    Let G = (V,E) be a graph. A subset S of V is called an equivalence set if every component of the induced subgraph (S) is complete. If further at least one component of (V − S) is not complete, then S is called a Smarandachely equivalence set

    OV Graphs Are (Probably) Hard Instances

    Get PDF
    © Josh Alman and Virginia Vassilevska Williams. A graph G on n nodes is an Orthogonal Vectors (OV) graph of dimension d if there are vectors v1, . . ., vn ∈ {0, 1}d such that nodes i and j are adjacent in G if and only if hvi, vji = 0 over Z. In this paper, we study a number of basic graph algorithm problems, except where one is given as input the vectors defining an OV graph instead of a general graph. We show that for each of the following problems, an algorithm solving it faster on such OV graphs G of dimension only d = O(log n) than in the general case would refute a plausible conjecture about the time required to solve sparse MAX-k-SAT instances: Determining whether G contains a triangle. More generally, determining whether G contains a directed k-cycle for any k ≥ 3. Computing the square of the adjacency matrix of G over Z or F2. Maintaining the shortest distance between two fixed nodes of G, or whether G has a perfect matching, when G is a dynamically updating OV graph. We also prove some complementary results about OV graphs. We show that any problem which is NP-hard on constant-degree graphs is also NP-hard on OV graphs of dimension O(log n), and we give two problems which can be solved faster on OV graphs than in general: Maximum Clique, and Online Matrix-Vector Multiplication

    Motif Clustering and Overlapping Clustering for Social Network Analysis

    Full text link
    Motivated by applications in social network community analysis, we introduce a new clustering paradigm termed motif clustering. Unlike classical clustering, motif clustering aims to minimize the number of clustering errors associated with both edges and certain higher order graph structures (motifs) that represent "atomic units" of social organizations. Our contributions are two-fold: We first introduce motif correlation clustering, in which the goal is to agnostically partition the vertices of a weighted complete graph so that certain predetermined "important" social subgraphs mostly lie within the same cluster, while "less relevant" social subgraphs are allowed to lie across clusters. We then proceed to introduce the notion of motif covers, in which the goal is to cover the vertices of motifs via the smallest number of (near) cliques in the graph. Motif cover algorithms provide a natural solution for overlapping clustering and they also play an important role in latent feature inference of networks. For both motif correlation clustering and its extension introduced via the covering problem, we provide hardness results, algorithmic solutions and community detection results for two well-studied social networks
    corecore