2,736 research outputs found

    Covering a tree with rooted subtrees -parameterized and approximation algorithms

    Get PDF

    Partitions and Coverings of Trees by Bounded-Degree Subtrees

    Full text link
    This paper addresses the following questions for a given tree TT and integer d2d\geq2: (1) What is the minimum number of degree-dd subtrees that partition E(T)E(T)? (2) What is the minimum number of degree-dd subtrees that cover E(T)E(T)? We answer the first question by providing an explicit formula for the minimum number of subtrees, and we describe a linear time algorithm that finds the corresponding partition. For the second question, we present a polynomial time algorithm that computes a minimum covering. We then establish a tight bound on the number of subtrees in coverings of trees with given maximum degree and pathwidth. Our results show that pathwidth is the right parameter to consider when studying coverings of trees by degree-3 subtrees. We briefly consider coverings of general graphs by connected subgraphs of bounded degree

    Proximity Drawings of High-Degree Trees

    Full text link
    A drawing of a given (abstract) tree that is a minimum spanning tree of the vertex set is considered aesthetically pleasing. However, such a drawing can only exist if the tree has maximum degree at most 6. What can be said for trees of higher degree? We approach this question by supposing that a partition or covering of the tree by subtrees of bounded degree is given. Then we show that if the partition or covering satisfies some natural properties, then there is a drawing of the entire tree such that each of the given subtrees is drawn as a minimum spanning tree of its vertex set

    The number of maximum matchings in a tree

    Get PDF
    We determine upper and lower bounds for the number of maximum matchings (i.e., matchings of maximum cardinality) m(T)m(T) of a tree TT of given order. While the trees that attain the lower bound are easily characterised, the trees with largest number of maximum matchings show a very subtle structure. We give a complete characterisation of these trees and derive that the number of maximum matchings in a tree of order nn is at most O(1.391664n)O(1.391664^n) (the precise constant being an algebraic number of degree 14). As a corollary, we improve on a recent result by G\'orska and Skupie\'n on the number of maximal matchings (maximal with respect to set inclusion).Comment: 38 page

    An extension of Tamari lattices

    Get PDF
    For any finite path vv on the square grid consisting of north and east unit steps, starting at (0,0), we construct a poset Tam(v)(v) that consists of all the paths weakly above vv with the same number of north and east steps as vv. For particular choices of vv, we recover the traditional Tamari lattice and the mm-Tamari lattice. Let v\overleftarrow{v} be the path obtained from vv by reading the unit steps of vv in reverse order, replacing the east steps by north steps and vice versa. We show that the poset Tam(v)(v) is isomorphic to the dual of the poset Tam(v)(\overleftarrow{v}). We do so by showing bijectively that the poset Tam(v)(v) is isomorphic to the poset based on rotation of full binary trees with the fixed canopy vv, from which the duality follows easily. This also shows that Tam(v)(v) is a lattice for any path vv. We also obtain as a corollary of this bijection that the usual Tamari lattice, based on Dyck paths of height nn, is a partition of the (smaller) lattices Tam(v)(v), where the vv are all the paths on the square grid that consist of n1n-1 unit steps. We explain possible connections between the poset Tam(v)(v) and (the combinatorics of) the generalized diagonal coinvariant spaces of the symmetric group.Comment: 18 page
    corecore