35,716 research outputs found

    Connectedness of graphs and its application to connected matroids through covering-based rough sets

    Full text link
    Graph theoretical ideas are highly utilized by computer science fields especially data mining. In this field, a data structure can be designed in the form of tree. Covering is a widely used form of data representation in data mining and covering-based rough sets provide a systematic approach to this type of representation. In this paper, we study the connectedness of graphs through covering-based rough sets and apply it to connected matroids. First, we present an approach to inducing a covering by a graph, and then study the connectedness of the graph from the viewpoint of the covering approximation operators. Second, we construct a graph from a matroid, and find the matroid and the graph have the same connectedness, which makes us to use covering-based rough sets to study connected matroids. In summary, this paper provides a new approach to studying graph theory and matroid theory

    On the tractability of some natural packing, covering and partitioning problems

    Get PDF
    In this paper we fix 7 types of undirected graphs: paths, paths with prescribed endvertices, circuits, forests, spanning trees, (not necessarily spanning) trees and cuts. Given an undirected graph G=(V,E)G=(V,E) and two "object types" A\mathrm{A} and B\mathrm{B} chosen from the alternatives above, we consider the following questions. \textbf{Packing problem:} can we find an object of type A\mathrm{A} and one of type B\mathrm{B} in the edge set EE of GG, so that they are edge-disjoint? \textbf{Partitioning problem:} can we partition EE into an object of type A\mathrm{A} and one of type B\mathrm{B}? \textbf{Covering problem:} can we cover EE with an object of type A\mathrm{A}, and an object of type B\mathrm{B}? This framework includes 44 natural graph theoretic questions. Some of these problems were well-known before, for example covering the edge-set of a graph with two spanning trees, or finding an ss-tt path PP and an s′s'-t′t' path P′P' that are edge-disjoint. However, many others were not, for example can we find an ss-tt path P⊆EP\subseteq E and a spanning tree T⊆ET\subseteq E that are edge-disjoint? Most of these previously unknown problems turned out to be NP-complete, many of them even in planar graphs. This paper determines the status of these 44 problems. For the NP-complete problems we also investigate the planar version, for the polynomial problems we consider the matroidal generalization (wherever this makes sense)

    Non-homeomorphic topological rank and expansiveness

    Full text link
    Downarowicz and Maass (2008) have shown that every Cantor minimal homeomorphism with finite topological rank K>1K > 1 is expansive. Bezuglyi, Kwiatkowski and Medynets (2009) extended the result to non-minimal cases. On the other hand, Gambaudo and Martens (2006) had expressed all Cantor minimal continuou surjections as the inverse limit of graph coverings. In this paper, we define a topological rank for every Cantor minimal continuous surjection, and show that every Cantor minimal continuous surjection of finite topological rank has the natural extension that is expansive

    Nucleation-free 3D3D rigidity

    Get PDF
    When all non-edge distances of a graph realized in Rd\mathbb{R}^{d} as a {\em bar-and-joint framework} are generically {\em implied} by the bar (edge) lengths, the graph is said to be {\em rigid} in Rd\mathbb{R}^{d}. For d=3d=3, characterizing rigid graphs, determining implied non-edges and {\em dependent} edge sets remains an elusive, long-standing open problem. One obstacle is to determine when implied non-edges can exist without non-trivial rigid induced subgraphs, i.e., {\em nucleations}, and how to deal with them. In this paper, we give general inductive construction schemes and proof techniques to generate {\em nucleation-free graphs} (i.e., graphs without any nucleation) with implied non-edges. As a consequence, we obtain (a) dependent graphs in 3D3D that have no nucleation; and (b) 3D3D nucleation-free {\em rigidity circuits}, i.e., minimally dependent edge sets in d=3d=3. It additionally follows that true rigidity is strictly stronger than a tractable approximation to rigidity given by Sitharam and Zhou \cite{sitharam:zhou:tractableADG:2004}, based on an inductive combinatorial characterization. As an independently interesting byproduct, we obtain a new inductive construction for independent graphs in 3D3D. Currently, very few such inductive constructions are known, in contrast to 2D2D

    A Pfaffian formula for monomer-dimer partition functions

    Full text link
    We consider the monomer-dimer partition function on arbitrary finite planar graphs and arbitrary monomer and dimer weights, with the restriction that the only non-zero monomer weights are those on the boundary. We prove a Pfaffian formula for the corresponding partition function. As a consequence of this result, multipoint boundary monomer correlation functions at close packing are shown to satisfy fermionic statistics. Our proof is based on the celebrated Kasteleyn theorem, combined with a theorem on Pfaffians proved by one of the authors, and a careful labeling and directing procedure of the vertices and edges of the graph.Comment: Added referenc

    Sink-Stable Sets of Digraphs

    Full text link
    We introduce the notion of sink-stable sets of a digraph and prove a min-max formula for the maximum cardinality of the union of k sink-stable sets. The results imply a recent min-max theorem of Abeledo and Atkinson on the Clar number of bipartite plane graphs and a sharpening of Minty's coloring theorem. We also exhibit a link to min-max results of Bessy and Thomasse and of Sebo on cyclic stable sets
    • …
    corecore