5,595 research outputs found

    Development of a framework for automated systematic testing of safety-critical embedded systems

    Get PDF
    ā€œThis material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder." ā€œCopyright IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.ā€In this paper we introduce the development of a framework for testing safety-critical embedded systems based on the concepts of model-based testing. In model-based testing the test cases are derived from a model of the system under test. In our approach the model is an automaton model that is automatically extracted from the C-source code of the system under test. Beside random test data generation the test case generation uses formal methods, in detail model checking techniques. To find appropriate test cases we use the requirements defined in the system specification. To cover further execution paths we developed an additional, to our best knowledge, novel method based on special structural coverage criteria. We present preliminary results on the model extraction using a concrete industrial case study from the automotive domain

    Test generation from P systems using model checking

    Get PDF
    This paper presents some testing approaches based on model checking and using different testing criteria. First, test sets are built from different Kripke structure representations. Second, various rule coverage criteria for transitional, non-deterministic, cell-like P systems, are considered in order to generate adequate test sets. Rule based coverage criteria (simple rule coverage, context-dependent rule coverage and variants) are defined and, for each criterion, a set of LTL (Linear Temporal Logic) formulas is provided. A codification of a P system as a Kripke structure and the sets of LTL properties are used in test generation: for each criterion, test cases are obtained from the counterexamples of the associated LTL formulas, which are automatically generated from the Kripke structure codification of the P system. The method is illustrated with an implementation using a specific model checker, NuSMV. (C) 2010 Elsevier Inc. All rights reserved

    The JKind Model Checker

    Full text link
    JKind is an open-source industrial model checker developed by Rockwell Collins and the University of Minnesota. JKind uses multiple parallel engines to prove or falsify safety properties of infinite state models. It is portable, easy to install, performance competitive with other state-of-the-art model checkers, and has features designed to improve the results presented to users: inductive validity cores for proofs and counterexample smoothing for test-case generation. It serves as the back-end for various industrial applications.Comment: CAV 201

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Model Checker Execution Reports

    Get PDF
    Software model checking constitutes an undecidable problem and, as such, even an ideal tool will in some cases fail to give a conclusive answer. In practice, software model checkers fail often and usually do not provide any information on what was effectively checked. The purpose of this work is to provide a conceptual framing to extend software model checkers in a way that allows users to access information about incomplete checks. We characterize the information that model checkers themselves can provide, in terms of analyzed traces, i.e. sequences of statements, and safe cones, and present the notion of execution reports, which we also formalize. We instantiate these concepts for a family of techniques based on Abstract Reachability Trees and implement the approach using the software model checker CPAchecker. We evaluate our approach empirically and provide examples to illustrate the execution reports produced and the information that can be extracted
    • ā€¦
    corecore