36 research outputs found

    Fast and Accurate Camera Covariance Computation for Large 3D Reconstruction

    Full text link
    Estimating uncertainty of camera parameters computed in Structure from Motion (SfM) is an important tool for evaluating the quality of the reconstruction and guiding the reconstruction process. Yet, the quality of the estimated parameters of large reconstructions has been rarely evaluated due to the computational challenges. We present a new algorithm which employs the sparsity of the uncertainty propagation and speeds the computation up about ten times \wrt previous approaches. Our computation is accurate and does not use any approximations. We can compute uncertainties of thousands of cameras in tens of seconds on a standard PC. We also demonstrate that our approach can be effectively used for reconstructions of any size by applying it to smaller sub-reconstructions.Comment: ECCV 201

    Efficient Constellation-Based Map-Merging for Semantic SLAM

    Full text link
    Data association in SLAM is fundamentally challenging, and handling ambiguity well is crucial to achieve robust operation in real-world environments. When ambiguous measurements arise, conservatism often mandates that the measurement is discarded or a new landmark is initialized rather than risking an incorrect association. To address the inevitable `duplicate' landmarks that arise, we present an efficient map-merging framework to detect duplicate constellations of landmarks, providing a high-confidence loop-closure mechanism well-suited for object-level SLAM. This approach uses an incrementally-computable approximation of landmark uncertainty that only depends on local information in the SLAM graph, avoiding expensive recovery of the full system covariance matrix. This enables a search based on geometric consistency (GC) (rather than full joint compatibility (JC)) that inexpensively reduces the search space to a handful of `best' hypotheses. Furthermore, we reformulate the commonly-used interpretation tree to allow for more efficient integration of clique-based pairwise compatibility, accelerating the branch-and-bound max-cardinality search. Our method is demonstrated to match the performance of full JC methods at significantly-reduced computational cost, facilitating robust object-based loop-closure over large SLAM problems.Comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 201

    Network Uncertainty Informed Semantic Feature Selection for Visual SLAM

    Full text link
    In order to facilitate long-term localization using a visual simultaneous localization and mapping (SLAM) algorithm, careful feature selection can help ensure that reference points persist over long durations and the runtime and storage complexity of the algorithm remain consistent. We present SIVO (Semantically Informed Visual Odometry and Mapping), a novel information-theoretic feature selection method for visual SLAM which incorporates semantic segmentation and neural network uncertainty into the feature selection pipeline. Our algorithm selects points which provide the highest reduction in Shannon entropy between the entropy of the current state and the joint entropy of the state, given the addition of the new feature with the classification entropy of the feature from a Bayesian neural network. Each selected feature significantly reduces the uncertainty of the vehicle state and has been detected to be a static object (building, traffic sign, etc.) repeatedly with a high confidence. This selection strategy generates a sparse map which can facilitate long-term localization. The KITTI odometry dataset is used to evaluate our method, and we also compare our results against ORB_SLAM2. Overall, SIVO performs comparably to the baseline method while reducing the map size by almost 70%.Comment: Published in: 2019 16th Conference on Computer and Robot Vision (CRV

    C-blox: A Scalable and Consistent TSDF-based Dense Mapping Approach

    Full text link
    In many applications, maintaining a consistent dense map of the environment is key to enabling robotic platforms to perform higher level decision making. Several works have addressed the challenge of creating precise dense 3D maps from visual sensors providing depth information. However, during operation over longer missions, reconstructions can easily become inconsistent due to accumulated camera tracking error and delayed loop closure. Without explicitly addressing the problem of map consistency, recovery from such distortions tends to be difficult. We present a novel system for dense 3D mapping which addresses the challenge of building consistent maps while dealing with scalability. Central to our approach is the representation of the environment as a collection of overlapping TSDF subvolumes. These subvolumes are localized through feature-based camera tracking and bundle adjustment. Our main contribution is a pipeline for identifying stable regions in the map, and to fuse the contributing subvolumes. This approach allows us to reduce map growth while still maintaining consistency. We demonstrate the proposed system on a publicly available dataset and simulation engine, and demonstrate the efficacy of the proposed approach for building consistent and scalable maps. Finally we demonstrate our approach running in real-time on-board a lightweight MAV.Comment: 8 pages, 5 figures, conferenc

    Informative Path Planning for Active Field Mapping under Localization Uncertainty

    Full text link
    Information gathering algorithms play a key role in unlocking the potential of robots for efficient data collection in a wide range of applications. However, most existing strategies neglect the fundamental problem of the robot pose uncertainty, which is an implicit requirement for creating robust, high-quality maps. To address this issue, we introduce an informative planning framework for active mapping that explicitly accounts for the pose uncertainty in both the mapping and planning tasks. Our strategy exploits a Gaussian Process (GP) model to capture a target environmental field given the uncertainty on its inputs. For planning, we formulate a new utility function that couples the localization and field mapping objectives in GP-based mapping scenarios in a principled way, without relying on any manually tuned parameters. Extensive simulations show that our approach outperforms existing strategies, with reductions in mean pose uncertainty and map error. We also present a proof of concept in an indoor temperature mapping scenario.Comment: 8 pages, 7 figures, submission (revised) to Robotics & Automation Letters (and IEEE International Conference on Robotics and Automation

    Simultaneous Parameter Calibration, Localization, and Mapping

    Get PDF
    The calibration parameters of a mobile robot play a substantial role in navigation tasks. Often these parameters are subject to variations that depend either on changes in the environment or on the load of the robot. In this paper, we propose an approach to simultaneously estimate a map of the environment, the position of the on-board sensors of the robot, and its kinematic parameters. Our method requires no prior knowledge about the environment and relies only on a rough initial guess of the parameters of the platform. The proposed approach estimates the parameters online and it is able to adapt to non-stationary changes of the configuration. We tested our approach in simulated environments and on a wide range of real-world data using different types of robotic platforms. (C) 2012 Taylor & Francis and The Robotics Society of Japa

    Improved Pose Graph Optimization for Planar Motions Using Riemannian Geometry on the Manifold of Dual Quaternions

    Get PDF
    We present a novel Riemannian approach for planar pose graph optimization problems. By formulating the cost function based on the Riemannian metric on the manifold of dual quaternions representing planar motions, the nonlinear structure of the SE(2) group is inherently considered. To solve the on-manifold least squares problem, a Riemannian Gauss-Newton method using the exponential retraction is applied. The proposed Riemannian pose graph optimizer (RPG-Opt) is further evaluated based on public planar pose graph data sets. Compared with state-of-the-art frameworks, the proposed method gives equivalent accuracy and better convergence robustness under large uncertainties of odometry measurements.Comment: 7 pages. Submitted to 21st IFAC World Congress (IFAC 2020
    corecore