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Abstract: We present a novel Riemannian approach for planar pose graph optimization
problems. By formulating the cost function based on the Riemannian metric on the manifold
of dual quaternions representing planar motions, the nonlinear structure of the SE(2) group is
inherently considered. To solve the on-manifold least squares problem, a Riemannian Gauss–
Newton method using the exponential retraction is applied. The proposed Riemannian pose
graph optimizer (RPG-Opt) is further evaluated based on public planar pose graph data sets.
Compared with state-of-the-art frameworks, the proposed method gives equivalent accuracy and
better convergence robustness under large uncertainties of odometry measurements.

Keywords: Parameter estimation, Riemannian geometry, manifold optimization, planar rigid
body motion, pose graph optimization.

1. INTRODUCTION

Pose graph optimization (Grisetti et al. (2010)) plays a
fundamental role in robotic and computer vision tasks
such as simultaneous localization and mapping (SLAM),
structure from motion (SfM), etc. A pose graph is a graph
with nodes representing robot poses and edges linking
the nodes, between which odometry measurements are
available. Pose graph optimization problems are typically
formulated to maximize the likelihood of the observed
odometry measurements of all the edges under the con-
straint imposed by the group structure. As pointed out
in Carlone and Censi (2014), they are non-convex and
contain multiple local minima. Mathematically speaking,
the planar rigid motions belong to the special Euclidean
group SE(2). The frequently used representation approach
in the context of planar pose graph optimization is the
two-dimensional rotation matrix R ∈ SO(2) plus the
translation t . Consequently, the three-DoF planar rigid
motions are overparameterized by six elements, which
leads to three degrees of redundancy. The cost function
for performing the maximum likelihood estimation (MLE)
is normally formulated as the sum of individual rotational
and translational error, which lacks consideration of the
underlying group structure. This can be problematic when
the rotation and translation errors are at different scales
of uncertainty since the scaling ratio of the two error
terms needs to be assumed according to the measurement
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noise. Moreover, for highly nonlinear and uncertain rigid
motions, the structure-unaware formulations and conven-
tional solvers for constrained optimization problems may
have the risk of non-convergence and are prone to local
minima.

The planar dual quaternions are an alternative approach
for representing planar rigid motions and can be written
as four-dimensional vectors with only one degree of re-
dundancy. Recently, there have been works dedicated to
geometry-aware stochastic filters for pose estimation using
the (dual) quaternion representation. In Gilitschenski et al.
(2016), the Bingham distribution was deployed to stochas-
tically model the uncertainty of unit quaternions and cor-
responding stochastic filters were proposed for orientation
estimation. In Srivatsan et al. (2018); Li et al. (2018a)
and Li et al. (2018b), dual quaternion-based filtering ap-
proaches were proposed for rigid body motion estima-
tion. In Cheng et al. (2016), the pose graph optimization
problem was re-parameterized by unit dual quaternions
and better computational efficiency was shown. However,
the deployed objective function heuristically removes en-
tries that might cause singularities without theoretically
sound adaptation to the manifold structure of unit dual
quaternions. Moreover, the error term in the objective
function was merely reformulated from the conventional
homogeneous matrix-based scheme. Therefore, the result-
ing graph optimization scheme was not observed with
improved accuracy and robustness, especially in the case
of large odometry noise.



From the perspective of differential geometry, the set of
planar dual quaternions forms a Riemannian manifold
(do Carmo (1992); Busam et al. (2017)) equipped with
the so-called Riemannian metric, which allows measuring
on-manifold uncertainty in accordance with the manifold
structure. Furthermore, optimization approaches proposed
on Riemannian manifolds, or equivalently Riemannian
optimization approaches, have been gaining in popularity
over the years (Absil et al. (2009)). Compared to conven-
tional solvers for constrained optimization problems that
use, e.g., the Lagrange multipliers, the family of Rieman-
nian optimizers have shown better convergence efficiency
and robustness as they exploit the geometric structure of
the manifold.

In this paper, we propose the so-called Riemannian pose
graph optimizer (RPG-Opt) for planar motions repre-
sented by dual quaternions. Here, odometry errors of edges
are measured based on the Riemannian metric on the
manifold of planar dual quaternions. Unlike conventional
solvers for constrained optimization problems as given
in Carlone et al. (2014, 2015a), we apply the Riemannian
Gauss–Newton approach on the manifold with exponential
retraction for updates. Both the cost function formulation
and optimization approach are geometry-aware and inher-
ently consider the underlying nonlinear structure of the
SE(2) group. For evaluation, we compare the proposed
approach with state-of-the-art pose graph optimization
frameworks (e.g., GTSAM Dellaert (2012), g2o Kümmerle
et al. (2011) and iSAM Kaess et al. (2008)) based on public
planar pose graph data sets under ordinary odometry noise
level. We further synthesize new data sets with addition-
ally larger odometry noise for evaluating the robustness.
Comparisons show that our approach gives equally accu-
rate results as the state-of-the-art frameworks and gives
superior accuracy under large odometry uncertainties.

The remainder of the paper is as follows. In Sec. 2, we
introduce the dual quaternion parameterization for planar
rigid motions and the geometric structure of the planar
dual quaternion manifold. Sec. 3 introduces the proposed
cost function and the on-manifold optimizer, the RPG-
opt. We further evaluate the proposed approach regarding
accuracy and convergence robustness in Sec. 4. The work
is finally concluded in Sec. 5.

2. PLANAR DUAL QUATERNION
REPRESENTATION AND MANIFOLD STRUCTURE

2.1 Planar Rigid Motion Represented by Dual Quaternions

By convention, unit quaternions representing planar rota-
tions are written as r = cos(θ/2)+k sin(θ/2) ,with the unit
vector k indicating the z-axis, around which a rotation
of angle θ is performed (Brookshire and Teller (2013)).
Any v ∈ R

2 can be rotated to v′ according to r via
v′ = r ⊗ v ⊗ r∗ , with ⊗ denoting the Hamilton product
(Hamilton (1844)) and r∗ = cos(θ/2) − k sin(θ/2) the
conjugate of r . Moreover, the planar rotation quaternions
can be reformulated into the following vector form

r = [ cos(θ/2), sin(θ/2) ]
⊤
∈ S

1 ⊂ R
2 , (1)

which are located on the unit circle on the x, y-plane.
Given two planar quaternions r = [ r0, r1 ]

⊤ and s =
[ s0, s1 ]

⊤ , their Hamilton product can also be represented

as ordinary matrix-vector multiplication, namely r ⊗ s =
Qx

r s = Qy
s r , with

Qx

r =

[

r0 −r1
r1 r0

]

, Qy

s =

[

s0 s1
−s1 s0

]

. (2)

It is then trivial to confirm that both the left and right
matrix representation belong to the two-dimensional rota-
tion group SO(2), i.e., QQ⊤ = Q⊤Q = I ∈ R

2×2 and its
determinant det(Q) = 1 . The dual quaternion representa-
tion for planar rigid motions is defined as x = r+ ǫ

2t⊗ r ,

with ǫ denoting the dual number which satisfies ǫ2 = 0 and
t the translation. The corresponding vector form of planar
dual quaternions can then be written as

x = [x⊤
r ,x

⊤
s ]⊤ ∈ S

1 × R
2 := M ,

with the real part xr defined as in (1) and the dual part

xs =
1

2
t⊗ xr =

1

2
Qy

r t . (3)

Therefore, the manifold of planar dual quaternions (de-
noted as M) is the Cartesian product of the unit cir-
cle S

1 and the two-dimensional Euclidean space R
2.

The arithmetics of dual quaternions are the combination
of the Hamilton product and the dual number theory.
For instance, given two planar dual quaternions x =
[x0, x1, x2, x3 ]

⊤ and y = [ y0, y1, y2, y3 ]
⊤ , their product

in the form of matrix-vector multiplication can be written
as x⊞ y = Qp

x y = Qq
y x , with

Qp

x =

[

x0 −x1 0 0
x1 x0 0 0
x2 x3 x0 −x1

x3 −x2 x1 x0

]

, Qq

y =

[

y0 −y1 0 0
y1 y0 0 0
y2 −y3 y0 y1

y3 y2 −y1 y0

]

.

Similar to the rotation rule of unit quaternions, any v ∈ R
2

can be transformed to v′ via a planar rotation of θ followed
by a translation t according to

v′ = x⊞ v ⊞ x∗ ,

with x∗ = diag (1,−1,−1,−1) · x being the conjugate of
x . Here, diag(·) is a diagonal matrix with the arguments
placed at the diagonal entries. The inverse of a planar dual
quaternion is identical to its conjugate, namely x−1 =
x∗ . It should be noted that the vector form of dual
quaternions for planar motions is expressed w.r.t. the
coordinate system {1,k, i, j} , which is a reordering of the
general quaternion basis {1, i, j,k} .

2.2 Geometry of Planar Dual Quaternion Manifold

The manifold of planar dual quaternions M can be derived
as the zero-level set of the following vector function defined
in R

4

g(x) =

[

x⊤
r xr − 1

0

]

, x = [xr,xs ]
⊤ ∈ R

4 ,

with 0 ∈ R
2 being a zero vector. This can be further used

to derive the tangent plane TxM at x ∈ M by calculating
the null space of the Jacobian of g(x) evaluated at x, i.e.,

TxM = ker (∇g) = ker

([

2x⊤
r 0⊤

0⊤ 0⊤

])

.

For any y ∈ R
4, its orthogonal projection to TxM can be

obtained via Pxy, with Px being the projection matrix
evaluated at x ∈ M . As there only exists the unit norm
constraint for the real part, the projection matrix can be



derived as the following form as given in Absil and Malick
(2012)

Px =

[

I− xrx
⊤
r 0

0 I

]

∈ R
4×4 , (4)

with I,0 ∈ R
2×2 . Note that the projection matrix is

symmetric and idempotent, namely PxPx = Px .

The logarithm map of unit dual quaternions representing
the SE(3) states can be obtained via the reparameteriza-
tion into screw motions of (θ, d, l,m) according to the Lie
algebra as introduced in Brookshire and Teller (2013) as
well as Busam et al. (2017). Here, θ denotes the screw
angle (identical to the rotation angle), d the translation
along the screw axis l (identical to rotation axis) and m
the screw moment. The logarithm map at the identity dual
quaternion 1 (a quaternion representing zero rotation and
zero translation) is given as Log1(x) =

θ
2 l+

ǫ
2 (θm+ d l) ,

with d = t⊤l . The screw moment m is computed w.r.t.
the projected origin c on the screw axis, namely m = c×l .
Consequently, the logarithm map of dual quaternions rep-
resenting planar rigid motions can be derived as a degen-
erate case of the spatial motions. Therefore, the projected
point c is the intersection of the screw axis k with the
x, y-plane and can be computed according to Busam et al.
(2017) as c = 1

2 (t+ k× t cot θ
2 ) .

Considering that the translation d along the screw axis k is
zero, we have the logarithm map of planar dual quaternion
x = [x0, x1, x2, x3 ]

⊤ derived as Log1(x) =
1
2 [ θ, θm

⊤ ]⊤.
As a result, it can be further derived that

θm = θ c× k =
θ

2

(

t× k+ t cot
θ

2

)

=
1

sinc(θ/2)

(

t× k sin
θ

2
+ t cos

θ

2

)

=
1

sinc(θ/2)

[

cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

]

t .

According to the definition of the dual part in (3), this can
be further derived into a more concise form as

0.5 θm =

[

x0 x1

−x1 x0

]

t

2 sinc(θ/2)
=

Qy
r t

2 sinc(θ/2)
=

[x2, x3 ]
⊤

sinc(θ/2)
.

Therefore, the logarithm of planar dual quaternion can be
written as

xt = Log1(x) =
1

γ
[x1, x2, x3 ]

⊤ ∈ R
3 , (5)

with γ = sinc(0.5 θ) and 1 = [ 1, 0, 0, 0 ]⊤. Moreover, the
logarithm map to the tangent plane at x ∈ M can be
computed according to the parallel transport (Busam et al.
(2017)) on the manifold of planar dual quaternions as

Log
x
(y) = x⊞ [ 0, Log1(x

−1
⊞ y)⊤ ]⊤ ∈ TxM . (6)

Conversely, the exponential map at identity 1maps a point
xt = [xt,1, xt,2, xt,3 ]

⊤ from the tangent plane at 1 back to
the manifold via

x = Exp1(xt) = [ cos(xt,1), γx
⊤
t ]⊤ .

Here, γ = sinc(0.5 θ) = sinc(xt,1) as given in (5). Similar
to the logarithm map, the exponential map for arbitrary
tangent plane locations can be derived according to the
parallel transport

Exp
x
(yt) = x⊞ Exp1

(

(x−1
⊞ yt)1:3

)

. (7)

Here, yt ∈ TxM and we take out the last three indices of
x−1

⊞ yt as its first element is zero according to (6).

Table 1. Evaluation results under ordinary noise.

Dataset RPG-
Opt10

g2o10 GTSAM iSAM

CSAIL I 1.07·10−1 1.07·10−1 1.07·10−1 1.07·10−1

Ω 3.90 · 101 3.90 · 101 3.90 · 101 9.40 · 102

FR079 I 7.19·10−2 7.19·10−2 7.19·10−2 7.19·10−2

Ω 3.76 · 101 3.76 · 101 3.76 · 101 3.50 · 102

FRH I 1.39·10−6 3.19·10−4 3.19·10−4 3.46·10−4

Ω 1.93·10−4 4.18·10−2 4.18·10−2 4.61·10−2

M3500 I 3.02 · 100 3.02 · 100 3.02 · 100 3.02 · 100

Ω 1.38 · 102 1.38 · 102 1.38 · 102 1.39 · 102

MITb I 6.60 · 100 2.70 · 101 2.83 · 106 2.78 · 100

Ω 3.02 · 103 7.71 · 102 4.49 · 109 2.26×102

City10K I 8.72 · 100 8.72 · 100 6.77 · 106 8.72 · 100

Ω 5.12 · 102 5.12 · 102 2.48 · 108 5.18 · 102

M10K I 3.03 · 102 3.03 · 102 3.17 · 107 3.03 · 102

Ω 1.99 · 105 1.98 · 105 2.91 · 1012 2.93 · 108

3. RPG-OPT:
A RIEMANNIAN POSE GRAPH OPTIMIZER

3.1 Geometry-Aware Cost Function

The pose graph optimization problem is formulated as
the maximum likelihood estimation given the observed
odometry. The optimized poses on the graph C can then
be obtained by minimizing the sum of the distance metrics
through each edge of the graph, namely

x̃∗ = arg min
x̃∈Mn

∑

〈i,j〉∈C
e⊤ij Ωij eij , (8)

with x̃ ∈ R
4n being the poses of n graph nodes concate-

nated into one vector, where each pose xi ∈ M ⊂ R
4 is

a planar dual quaternion. Here, Ωij ∈ R
3×3 denotes the

uncertainty of the odometry measurement in the form of
information matrix. The manifold for optimization is thus
the Cartesian product of the planar dual quaternion man-
ifold M, which is also a Riemannian manifold according
to Birdal et al. (2018). The cost function

F(x̃) =
∑

〈i,j〉∈C
e⊤ij Ωij eij (9)

is thus a scalar function proposed on the manifold M
n,

namely F : M
n → R . Unlike the existing works

in Kaess and Dellaert (2009), Dellaert and Kaess (2006)
and Kümmerle et al. (2011), we propose a cost function
based on the Riemannian metric (Absil et al. (2009)) on
the manifold of planar dual quaternions, which inherently
considers the geometric structure of the nonlinear man-
ifold. Given the odometry measurement zij of the edge
connecting node xi and xj , the error term of the edge is
defined as

eij = Log1(z
−1
ij ⊞ x−1

i ⊞ xj) ∈ R
3 , (10)

such that the cost function for a single edge can be derived
according to the Riemannian metric as

fij(xi,xj) =
1

2
e⊤ij Ωij eij =

1

2
‖Log1(z

−1
ij ⊞ x−1

i ⊞ xj)‖
2
Ωij

,

which is the Mahalanobis distance measured on the tan-
gent plane at the identity planar dual quaternion 1 .



Table 2. Summarized evaluation results for synthetic data sets with chordal relaxation-based initialization.

RPG-Opt chord + RPG-Opt chord + g2o chord + GTSAM

Dataset et er et er et er et er

M3500a+ 2.60 · 10−1 8.42 · 100 2.60 · 10−1 8.42 · 100 2.60 · 10−1 8.42 · 100 3.310 · 100 1.55 · 101

M3500b+ 3.79 · 10−1 1.31 · 101 3.79 · 10−1 1.31 · 101 3.80 · 10−1 1.31 · 101 4.37 · 100 2.03 · 101

M3500c+ 3.94 · 10−1 1.31 · 101 3.94 · 10−1 1.31 · 101 3.91 · 10−1 1.31 · 101 1.14 · 100 1.36 · 101

M3500d+ 8.28 · 10−1 1.51 · 101 4.71 · 10−1 1.51 · 101 4.78 · 10−1 1.51 · 101 7.01 · 10−1 1.57 · 101

City10000a 4.34 · 10−2 1.55 · 100 4.34 · 10−2 1.55 · 100 4.34 · 10−2 1.55 · 100 4.33 · 10−2 1.55 · 100

City10000b 3.20 · 10−1 6.95 · 100 5.32 · 10−2 2.66 · 100 5.32 · 10−2 2.66 · 100 5.29 · 10−2 2.66 · 100

City10000c 2.86 · 10−2 5.80 · 100 5.77 · 10−2 2.67 · 100 5.77 · 10−2 2.67 · 100 5.77 · 10−2 2.67 · 100

City10000d 3.88 · 10−1 1.39 · 101 2.46 · 10−1 1.22 · 101 2.46 · 10−1 1.23 · 10−1 9.28 · 10−1 1.39 · 101

3.2 Riemannian Gauss–Newton Method for On-Manifold
Planar Pose Graph Optimization

We apply the Riemannian Gauss–Newton approach in Ab-
sil et al. (2009) for solving the nonlinear least square
problem formulated in (8). Here, a new iteration x̃k+1 is
obtained by retracting the on-tangent-plane Newton step
back to the manifold, namely

x̃k+1 = Rx̃k(α̃k) , α̃k ∈ Tx̃kM
n .

The iterative step α̃
k results from the Riemanian gradient

gradF (x̃k) and the Riemannian Hessian HessF (x̃k) via

HessF (x̃k) α̃k = −gradF (x̃k) ,

with α̃
k being the concatenated on-tangent-plane steps

calculated for each node. Without loss of generality, we
perform the following derivations based on the cost func-
tion fij of one single edge joining xi and xj . For better
readability, we ignore the iteration index k . The Rieman-
nian gradient w.r.t. xi can be computed by orthogonally
projecting the ordinary gradient of fij onto the tangent
plane at xi via

grad fij(xi) = Pxi
∇fij(xi) ,

with Pxi
being the projection matrix to Txi

M given in (4)
and ∇fij(xi) = A⊤

ij Ωij eij the gradient in the ambient
Euclidean space. Here, Aij is the Jacobian of the error
metric eij w.r.t. xi . Therefore, we have

grad fij(xi) = Pxi
A⊤

ij Ωij eij .

Similarly, the Riemannian gradient at node xj can be
calculated as

grad fij(xj) = Pxj
B⊤
ij Ωij eij ,

with Bij denoting the Jacobian of eij w.r.t. xj . The
Riemannian gradient of F in (9) is then computed by
traversing all the nodes through the graph with each entry
computed as

gradF[i] = Pxi
A⊤

ij Ωij eij

gradF[j] = Pxj
B⊤
ij Ωij eij .

The Riemannian Hessian can be computed by approxima-
tion (Absil et al. (2009)) with entries as follows

H[ii] = Pxi
A⊤

ij Ωij Aij P
⊤
xi

,

H[ij] = Pxi
A⊤

ij Ωij Bij P
⊤
xj

,

H[ji] = Pxj
B⊤
ij Ωij Aij P

⊤
xi

,

H[jj] = Pxj
B⊤
ij Ωij Bij P

⊤
xj

,

Here, i and j indicate the locations of block matrices in
the Hessian matrix H corresponding to the nodes xi and
xj . Finally, the iterative step can be obtained by solving
the linear system

H α̃ = −gradF ,

with α̃ denoting the on-tangent-plane iteration concate-
nated through each node.

The retraction maps a point from the tangent plane back
to the manifold, namely Rx̃ : Tx̃M

n → M
n , which

is not unique. For instance, there have been different
projection-like retractions proposed in Absil and Malick
(2012). We use the exponential retraction for x̃ with each
node undergoing the exponential map defined in (7) for
update, namely

xk+1
i = Exp

xk
i
(αk

i ) ,

for i = 1, ... , n . After the retraction back to the manifold,
the cost function can then be linearized at the tangent
plane at x̃k+1. The optimization is stopped until the norm
of the Riemannian gradient becomes sufficiently small.

4. EVALUATION

We evaluate the proposed RPG-Opt based on publicly
available planar pose graph data sets given in Carlone and
Censi (2014) and Carlone et al. (2014), and compare it
with three state-of-the-art pose graph optimization frame-
works: g2o in Grisetti et al. (2010), GTSAM in Dellaert
(2012) and iSAM in Kaess et al. (2008). We choose to use
Levenberg–Marquardt algorithm for iSAM and the Gauss–
Newton method for GTSAM. In g2o, the optimization is
performed using the Gauss–Newton algorithm. For most
of the publicly available pose graph data sets, the uncer-
tainty of the odometry measurements is described by the
information matrix for the state [ θ, tx, ty ]

⊤ , with θ being
the rotation angle and [ tx, ty ]

⊤ the translation. In order
to incorporate the estimated uncertainty, the logarithm
map in (5) can be reformulated into the following form

Log1(z
−1
ij ⊞ x−1

i ⊞ xj) =
1

2

[

1 0 0
0 β α
0 −α β

][

δθ
δtx
δty

]

, (11)

with α = δθ/2 and β = cos(δθ/2)/sinc(δθ/2) . Here, δθ and
[δtx , δty]

⊤ is the rotation angle and translation term of the

planar dual quaternion z−1
ij ⊞ x−1

i ⊞ xj , respectively. The

equation in (11) is essentially a nonlinear transformation



Σ
M3500a+ M3500b+ M3500c+ City10000a City10000b City10000c

[

0.0224 0 0
0 0.0224 0
0 0 0.0224

] [

0.0224 0 0
0 0.0224 0
0 0 0.1

] [

0.0224 0.01 0.025
0.01 0.0224 0.025
0.025 0.025 0.1

] [

0.001 0 0
0 0.001 0
0 0 0.002

] [

0.0015 0 0
0 0.0015 0
0 0 0.007

] [

0.0015 0.0005 0.001
0.0005 0.0015 0.001
0.001 0.001 0.007

]

o
d
o
m
et
ry

et = 2.58 · 100 et = 3.59 · 100 et = 2.82 · 100 et = 9.77 · 10−1 et = 1.28 · 100 et = 1.36 · 100

er = 2.96 · 101 er = 3.99 · 101 er = 3.87 · 101 er = 2.53 · 100 er = 4.84 · 100 er = 4.73 · 100

iS
A
M

et = 2.80 · 10−1 et = 1.68 · 100 et = 1.27 · 100 et = 9.20 · 10−2 et = 4.85 · 10−1 et = 4.80 · 10−1

er = 9.09 · 100 er = 1.97 · 101 er = 1.69 · 101 er = 6.24 · 100 er = 1.61 · 101 er = 1.69 · 101

g2
o

et = 1.61 · 100 et = 9.47 · 10−1 et = 1.44 · 100 et = 1.07 · 10−1 et = 6.01 · 10−1 et = 1.97 · 100

er = 2.00 · 101 er = 2.93 · 101 er = 2.97 · 101 er = 9.06 · 100 er = 1.80 · 101 er = 1.80 · 101

R
P
G
-O

p
t

et = 2.60 · 10−1 et = 3.79 · 10−1 et = 3.94 · 10−1 et = 4.34 · 10−2 et = 3.20 · 10−1 et = 2.86 · 10−1

er = 8.42 · 100 er = 1.31 · 101 er = 1.31 · 101 er = 1.55 · 100 er = 6.95 · 100 er = 5.79 · 100

Fig. 1. Evaluation results using synthetic data sets. Here, the optimizations are initialized with odometry measurements,
and iteration steps for RPG-Opt and g2o are fixed to be 30 . Results from GTSAM are not listed because of
nonconvergence. The frameworks iSAM and g2o are prone to local minima. Though initialized directly with the
odometry measurements, the proposed RPG-Opt shows the best accuracy and robustness against local minima
under large uncertainty. Data sets with ‘a’ (e.g., M3500a+ or City10000a) are added with equivalently scaled
odometry noise for rotations and translations. Data sets with ‘b’ have unequal noise level of rotation and translation.
Data sets with ‘c’ have unequal and correlated translational and rotational noise. The RPEs for rotation are in
angular degree. The additional odometry noise is set up given the covariance Σ, thus Ωij = Σ−1 .

of the state [δθ, δtx, δty]
⊤ provided by the data set. For

each iteration step, we can assume that the odometry
error is small, meaning α → 0 and β → 1 . Therefore, the
information matrix from the raw data set can be directly
deployed as the on-tangent-plane information matrix Ωij

in the metric of (11) . When the information matrices for
odometry are not available, a typical way to formulate the
cost function is to set Ωij = I ∈ R

3×3 . In the following
evaluations, we first test the proposed approach based on
data sets under ordinary odometry noise level using the
identity and real information matrix, respectively. Second,

we synthesize data sets with additional noise and perform
the evaluation w.r.t. the ground truth.

4.1 Evaluation Under Ordinary Odometry Noise Level

We first evaluate the proposed approach using data sets
with ordinary level of odometry noise. As no ground truth
is available, we use the cost function of g2o for comparison
(Kümmerle et al. (2011)), namely



Σ
M3500d+ City10000d

[

0.04 0.015 0.03
0.015 0.04 0.03
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Fig. 2. Sample visualization of results with chordal relax-
ation under large odometry noise.
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with R ∈ SO(2) being the ordinary rotation matrices and
t the translations.

Here, the logarithm map of rotation matrices can be de-
rived from Lie algebra as given in Carlone et al. (2015b).
Table 1 shows the results for both identity and real in-
formation matrices (denoted as I and Ω, respectively).
Here, g2o and RPG-Opt iteration steps are fixed to be
10 , whereas GTSAM and iSAM use their default stopping
criterion. Our approach, the RPG-Opt, reaches compara-
ble accuracy as the state of the art.

4.2 Evaluation Based on Synthetic Data Sets

We further synthesize two groups of data sets with known
information matrices for evaluation under large uncer-
tainty of odometry measurements. For that, we add ad-

0 5 10 15 20 25 30
0

2

4

6

8

10

12

0

10

20

30

40

50

(a) Change of RPE for each iteration.

0 5 10 15 20 25 30
6

8

10

12

14

16

18

(b) Change of cost function values defined in (9).

Fig. 3. Convergence of RPG-Opt and g2o for M3500c+.

ditional odometry noise to the data sets M3500s and
City10000 in Carlone and Censi (2014). Fig. 1 shows the
results w.r.t. the relative pose error (RPE) of translations
and rotations denoted as et and er, respectively. The opti-
mizations are initialized directly from the odometry mea-
surements. Results from GTSAM using the Gauss–Newton
approach are not listed because of nonconvergence. For all
the sequences, the g2o and iSAM framework are prone to
the local minima. However, the proposed approach shows
the best accuracy and robustness against local minima,
though no special initialization is performed.

For pose graph optimization under large uncertainty of
odometry measurements, it is typical to equip the op-
timizer with an additional initialization block for better
convergence. Therefore, we incorporate an initialization
method based on chordal relaxation in Carlone et al.
(2015b). Fig. 2 visualizes evaluation results with chordal
relaxation-based initialization using another two synthetic
data sets based on the M3500 and City10000. In this
case, the g2o shows significant improvement, achieving
the same converged accuracy as the proposed approach.
As a summary, Table 2 shows the optimization results
with chordal initialization for all the synthetic data sets
w.r.t. the ground truth. For data setsM3500a+,M3500b+,
M3500c+ and City10000a, the proposed approach initial-
ized with odometry measurements achieves the same errors
as the other approaches using the chordal initialization.
Results from iSAM are not available, because external
initializations are not supported by the framework. We
additionally list the results with direct odometry initializa-
tion for the RPG-Opt to show the convergence robustness
under large uncertainties of the proposed method .



4.3 Convergence

We further compare the convergence behavior of the pro-
posed approach with g2o as shown in Fig. 3. Here, the
sequence M3500c+ is used and the RPE for both trans-
lation and rotations are plotted in Fig. 3-(a). Fig. 3-(b)
shows the convergence of the proposed Riemannian metric
in (9). The optimizations are initialized with odometry and
the real information matrices are used. In both plots, the
proposed approach shows faster convergence and better
robustness against local minimum compared to g2o. This
mainly results from the geometry-aware cost function for-
mulation and the Riemannian Gauss–Newton method.

5. CONCLUSION

In this work, we have proposed a Riemannian approach
for planar pose graph optimization problems on the man-
ifold of dual quaternions. Here, the cost function is built
upon the Riemannian metric of the planar dual quaternion
manifold, based on which a Riemannian Gauss–Newton
method is applied using the exponential retraction. Both
the on-manifold MLE formulation and optimization are
geometry-aware, which inherently consider the underlying
nonlinear structure of the SE(2) group. We further per-
formed evaluations based on real-world and synthetic data
sets with extra noise. Compared with the state-of-the-art
frameworks, the proposed approach gives equally accurate
results under ordinary odometry noise and shows better
accuracy and robustness under large uncertainty of odom-
etry measurements. Based on the presented work, there is
still much potential to exploit. The proposed Riemannian
approach can be extended to the general dual quaternion-
based spatial pose graph optimization. Also, numerous
optimizers from the family of Riemannian optimization
can be further applied for better convergence robustness
and accuracy.
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