1,023 research outputs found

    Human Pose Estimation from Monocular Images : a Comprehensive Survey

    Get PDF
    Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we know, an overall review of this problem domain has yet to be provided. Furthermore, recent advancements based on deep learning have brought novel algorithms for this problem. In this paper, a comprehensive survey of human pose estimation from monocular images is carried out including milestone works and recent advancements. Based on one standard pipeline for the solution of computer vision problems, this survey splits the problema into several modules: feature extraction and description, human body models, and modelin methods. Problem modeling methods are approached based on two means of categorization in this survey. One way to categorize includes top-down and bottom-up methods, and another way includes generative and discriminative methods. Considering the fact that one direct application of human pose estimation is to provide initialization for automatic video surveillance, there are additional sections for motion-related methods in all modules: motion features, motion models, and motion-based methods. Finally, the paper also collects 26 publicly available data sets for validation and provides error measurement methods that are frequently used

    Normalizing Flows for Human Pose Anomaly Detection

    Full text link
    Video anomaly detection is an ill-posed problem because it relies on many parameters such as appearance, pose, camera angle, background, and more. We distill the problem to anomaly detection of human pose, thus reducing the risk of nuisance parameters such as appearance affecting the result. Focusing on pose alone also has the side benefit of reducing bias against distinct minority groups. Our model works directly on human pose graph sequences and is exceptionally lightweight (1K\sim1K parameters), capable of running on any machine able to run the pose estimation with negligible additional resources. We leverage the highly compact pose representation in a normalizing flows framework, which we extend to tackle the unique characteristics of spatio-temporal pose data and show its advantages in this use case. Our algorithm uses normalizing flows to learn a bijective mapping between the pose data distribution and a Gaussian distribution, using spatio-temporal graph convolution blocks. The algorithm is quite general and can handle training data of only normal examples, as well as a supervised dataset that consists of labeled normal and abnormal examples. We report state-of-the-art results on two anomaly detection benchmarks - the unsupervised ShanghaiTech dataset and the recent supervised UBnormal dataset

    Anomaly Detection in Autonomous Driving: A Survey

    Full text link
    Nowadays, there are outstanding strides towards a future with autonomous vehicles on our roads. While the perception of autonomous vehicles performs well under closed-set conditions, they still struggle to handle the unexpected. This survey provides an extensive overview of anomaly detection techniques based on camera, lidar, radar, multimodal and abstract object level data. We provide a systematization including detection approach, corner case level, ability for an online application, and further attributes. We outline the state-of-the-art and point out current research gaps.Comment: Daniel Bogdoll and Maximilian Nitsche contributed equally. Accepted for publication at CVPR 2022 WAD worksho
    corecore