1,045 research outputs found

    Output Feedback Control for Couple-Group Consensus of Multiagent Systems

    Get PDF
    This paper deals with the couple-group consensus problem for multiagent systems via output feedback control. Both continuous- and discrete-time cases are considered. The consensus problems are converted into the stability problem of the error systems by the system transformation. We obtain two necessary and sufficient conditions of couple-group consensus in different forms for each case. Two different algorithms are used to design the control gains for continuous- and discrete-time case, respectively. Finally, simulation examples are given to show the effectiveness of the proposed results

    An Overview of Recent Progress in the Study of Distributed Multi-agent Coordination

    Get PDF
    This article reviews some main results and progress in distributed multi-agent coordination, focusing on papers published in major control systems and robotics journals since 2006. Distributed coordination of multiple vehicles, including unmanned aerial vehicles, unmanned ground vehicles and unmanned underwater vehicles, has been a very active research subject studied extensively by the systems and control community. The recent results in this area are categorized into several directions, such as consensus, formation control, optimization, task assignment, and estimation. After the review, a short discussion section is included to summarize the existing research and to propose several promising research directions along with some open problems that are deemed important for further investigations

    A Review of Consensus-based Multi-agent UAV Applications

    Get PDF
    In this paper, a review of distributed control for multi-agent systems is proposed, focusing on consensus-based applications. Both rotary-wing and fixed-wing Unmanned Aerial Vehicles (UAVs) are considered. On one side, methodologies and implementations based on collision and obstacle avoidance through consensus are analyzed for multirotor UAVs. On the other hand, a target tracking through consensus is considered for fixed-wing UAVs. This novel approach to classify the literature could help researchers to assess the outcomes achieved in these two directions in view of potential practical implementations of consensus-based methodologies

    Opinion influence and evolution in social networks: a Markovian agents model

    Full text link
    In this paper, the effect on collective opinions of filtering algorithms managed by social network platforms is modeled and investigated. A stochastic multi-agent model for opinion dynamics is proposed, that accounts for a centralized tuning of the strength of interaction between individuals. The evolution of each individual opinion is described by a Markov chain, whose transition rates are affected by the opinions of the neighbors through influence parameters. The properties of this model are studied in a general setting as well as in interesting special cases. A general result is that the overall model of the social network behaves like a high-dimensional Markov chain, which is viable to Monte Carlo simulation. Under the assumption of identical agents and unbiased influence, it is shown that the influence intensity affects the variance, but not the expectation, of the number of individuals sharing a certain opinion. Moreover, a detailed analysis is carried out for the so-called Peer Assembly, which describes the evolution of binary opinions in a completely connected graph of identical agents. It is shown that the Peer Assembly can be lumped into a birth-death chain that can be given a complete analytical characterization. Both analytical results and simulation experiments are used to highlight the emergence of particular collective behaviours, e.g. consensus and herding, depending on the centralized tuning of the influence parameters.Comment: Revised version (May 2018

    Information Theory and Cooperative Control in Networked Multi-Agent Systems with Applications to Smart Grid

    Get PDF
    This dissertation focuses on information theoretic aspects of and cooperative control techniques in networked multi-agent systems (NMAS) with communication constraints. In the first part of the dissertation, information theoretic limitations of tracking problems in networked control systems, especially leader-follower systems with communication constraints, are studied. Necessary conditions on the data rate of each communication link for tracking of the leader-follower systems are provided. By considering the forward and feedback channels as one cascade channel, we also provide a lower bound for the data rate of the cascade channel for the system to track a reference signal such that the tracking error has finite second moment. Finally, the aforementioned results are extended to the case in which the leader system and follower system have different system models. In the second part, we propose an easily scalable hierarchical decision-making and control architecture for smart grid with communication constraints in which distributed customers equipped with renewable distributed generation (RDG) interact and trade energy in the grid. We introduce the key components and their interactions in the proposed control architecture and discuss the design of distributed controllers which deal with short-term and long-term grid stability, power load balancing and energy routing. At microgrid level, under the assumption of user cooperation and inter-user communications, we propose a distributed networked control strategy to solve the demand-side management problem in microgrids. Moreover, by considering communication delays between users and microgrid central controller, we propose a distributed networked control strategy with prediction to solve the demand-side management problem with communication delays. In the third part, we consider the disturbance attenuation and stabilization problem in networked control systems. To be specific, we consider the string stability in a large group of interconnected systems over a communication network. Its potential applications could be found in formation tracking control in groups of robots, as well as uncertainty reduction and disturbance attenuation in smart grid. We propose a leader-following consensus protocol for such interconnected systems and derive the sufficient conditions, in terms of communication topology and control parameters, for string stability. Simulation results and performance in terms of disturbance propagation are also given. In the fourth part, we consider distributed tracking and consensus in networked multi-agent systems with noisy time-varying graphs and incomplete data. In particular, a distributed tracking with consensus algorithm is developed for the space-object tracking with a satellite surveillance network. We also intend to investigate the possible application of such methods in smart grid networks. Later, conditions for achieving distributed consensus are discussed and the rate of convergence is quantified for noisy time-varying graphs with incomplete data. We also provide detailed simulation results and performance comparison of the proposed distributed tracking with consensus algorithm in the case of space-object tracking problem and that of distributed local Kalman filtering with centralized fusion and centralized Kalman filter. The information theoretic limitations developed in the first part of this dissertation provide guildlines for design and analysis of tracking problems in networked control systems. The results reveal the mutual interaction and joint application of information theory and control theory in networked control systems. Second, the proposed architectures and approaches enable scalability in smart grid design and allow resource pooling among distributed energy resources (DER) so that the grid stability and optimality is maintained. The proposed distributed networked control strategy with prediction provides an approach for cooperative control at RDG-equipped customers within a self-contained microgrid with different feedback delays. Our string stability analysis in the third part of this dissertation allows a single networked control system to be extended to a large group of interconnected subsystems while system stability is still maintained. It also reveals the disturbance propagation through the network and the effect of disturbance in one subsystem on other subsystems. The proposed leader-following consensus protocol in the constrained communication among users reveals the effect of communication in stabilization of networked control systems and the interaction between communication and control over a network. Finally, the distributed tracking and consensus in networked multi-agent systems problem shows that information sharing among users improves the quality of local estimates and helps avoid conflicting and inefficient distributed decisions. It also reveals the effect of the graph topologies and incomplete node measurements on the speed of achieving distributed decision and final consensus accuracy

    Effects of Delay on the Functionality of Large-scale Networks

    Get PDF
    Networked systems are common across engineering and the physical sciences. Examples include the Internet, coordinated motion of multi-agent systems, synchronization phenomena in nature etc. Their robust functionality is important to ensure smooth operation in the presence of uncertainty and unmodelled dynamics. Many such networked systems can be viewed under a unified optimization framework and several approaches to assess their nominal behaviour have been developed. In this paper, we consider what effect multiple, non-commensurate (heterogeneous) communication delays can have on the functionality of large-scale networked systems with nonlinear dynamics. We show that for some networked systems, the structure of the delayed dynamics allows functionality to be retained for arbitrary communication delays, even for switching topologies under certain connectivity conditions; whereas in other cases the loop gains have to be compensated for by the delay size, in order to render functionality delay-independent for arbitrary network sizes. Consensus reaching in multi-agent systems and stability of network congestion control for the Internet are used as examples. The differences and similarities of the two cases are explained in detail, and the application of the methodology to other technological and physical networks is discussed
    • …
    corecore