135 research outputs found

    Comparing MapReduce and pipeline implementations for counting triangles

    Get PDF
    A common method to define a parallel solution for a computational problem consists in finding a way to use the Divide and Conquer paradigm in order to have processors acting on its own data and scheduled in a parallel fashion. MapReduce is a programming model that follows this paradigm, and allows for the definition of efficient solutions by both decomposing a problem into steps on subsets of the input data and combining the results of each step to produce final results. Albeit used for the implementation of a wide variety of computational problems, MapReduce performance can be negatively affected whenever the replication factor grows or the size of the input is larger than the resources available at each processor. In this paper we show an alternative approach to implement the Divide and Conquer paradigm, named dynamic pipeline. The main features of dynamic pipelines are illustrated on a parallel implementation of the well-known problem of counting triangles in a graph. This problem is especially interesting either when the input graph does not fit in memory or is dynamically generated. To evaluate the properties of pipeline, a dynamic pipeline of processes and an ad-hoc version of MapReduce are implemented in the language Go, exploiting its ability to deal with channels and spawned processes. An empirical evaluation is conducted on graphs of different topologies, sizes, and densities. Observed results suggest that dynamic pipelines allows for an efficient implementation of the problem of counting triangles in a graph, particularly, in dense and large graphs, drastically reducing the execution time with respect to the MapReduce implementation.Peer ReviewedPostprint (published version

    Comparing MapReduce and pipeline implementations for counting triangles

    Get PDF
    A generalized method to define the Divide & Conquer paradigm in order to have processors acting on its own data and scheduled in a parallel fashion. MapReduce is a programming model that follows this paradigm, and allows for the definition of efficient solutions by both decomposing a problem into steps on subsets of the input data and combining the results of each step to produce final results. Albeit used for the implementation of a wide variety of computational problems, MapReduce performance can be negatively affected whenever the replication factor grows or the size of the input is larger than the resources available at each processor. In this paper we show an alternative approach to implement the Divide & Conquer paradigm, named pipeline. The main features of pipeline are illustrated on a parallel implementation of the well-known problem of counting triangles in a graph. This problem is especially interesting either when the input graph does not fit in memory or is dynamically generated. To evaluate the properties of pipeline, a dynamic pipeline of processes and an ad-hoc version of MapReduce are implemented in the language Go, exploiting its ability to deal with channels and spawned processes. An empirical evaluation is conducted on graphs of different sizes and densities. Observed results suggest that pipeline allows for the implementation of an efficient solution of the problem of counting triangles in a graph, particularly, in dense and large graphs, drastically reducing the execution time with respect to the MapReduce implementation.Peer ReviewedPostprint (published version

    Enumerating Subgraph Instances Using Map-Reduce

    Full text link
    The theme of this paper is how to find all instances of a given "sample" graph in a larger "data graph," using a single round of map-reduce. For the simplest sample graph, the triangle, we improve upon the best known such algorithm. We then examine the general case, considering both the communication cost between mappers and reducers and the total computation cost at the reducers. To minimize communication cost, we exploit the techniques of (Afrati and Ullman, TKDE 2011)for computing multiway joins (evaluating conjunctive queries) in a single map-reduce round. Several methods are shown for translating sample graphs into a union of conjunctive queries with as few queries as possible. We also address the matter of optimizing computation cost. Many serial algorithms are shown to be "convertible," in the sense that it is possible to partition the data graph, explore each partition in a separate reducer, and have the total computation cost at the reducers be of the same order as the computation cost of the serial algorithm.Comment: 37 page

    MapReduce vs. pipelining counting triangles

    Get PDF
    In this paper we follow an alternative approach named pipeline, to implement a parallel implementation of the well-known problem of counting triangles in a graph. This problem is especially interesting either when the input graph does not fit in memory or is dynamically generated. To be concrete, we implement a dynamic pipeline of processes and an ad-hoc MapReduce version using the language Go. We explote the ability of Go language to deal with channels and spawned processes. An empirical evaluation is conducted on graphs of different size and density. Observed results suggest that pipeline allows for the implementation of an efficient solution of the problem of counting triangles in a graph, particularly, in dense and large graphs, drastically reducing the execution time with respect to the MapReduce implementation.Peer ReviewedPostprint (published version

    Counting Triangles in Large Graphs on GPU

    Full text link
    The clustering coefficient and the transitivity ratio are concepts often used in network analysis, which creates a need for fast practical algorithms for counting triangles in large graphs. Previous research in this area focused on sequential algorithms, MapReduce parallelization, and fast approximations. In this paper we propose a parallel triangle counting algorithm for CUDA GPU. We describe the implementation details necessary to achieve high performance and present the experimental evaluation of our approach. Our algorithm achieves 8 to 15 times speedup over the CPU implementation and is capable of finding 3.8 billion triangles in an 89 million edges graph in less than 10 seconds on the Nvidia Tesla C2050 GPU.Comment: 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW
    • …
    corecore