37 research outputs found

    On-line construction of position heaps

    Get PDF
    We propose a simple linear-time on-line algorithm for constructing a position heap for a string [Ehrenfeucht et al, 2011]. Our definition of position heap differs slightly from the one proposed in [Ehrenfeucht et al, 2011] in that it considers the suffixes ordered from left to right. Our construction is based on classic suffix pointers and resembles the Ukkonen's algorithm for suffix trees [Ukkonen, 1995]. Using suffix pointers, the position heap can be extended into the augmented position heap that allows for a linear-time string matching algorithm [Ehrenfeucht et al, 2011].Comment: to appear in Journal of Discrete Algorithm

    Motif Discovery with Compact Approaches - Design and Applications

    Get PDF
    In the post-genomic era, the ability to predict the behavior, the function, or the structure of biological entities, as well as interactions among them, plays a fundamental role in the discovery of information to help biologists to explain biological mechanisms. In this context, appropriate characterization of the structures under analysis, and the exploitation of combinatorial properties of sequences, are crucial steps towards the development of efficient algorithms and data structures to be able to perform the analysis of biological sequences. Similarity is a fundamental concept in Biology. Several functional and structural properties, and evolutionary mechanisms, can be predicted comparing new elements with already classified elements, or comparing elements with a similar structure of function to infer the common mechanism that is at the basis of the observed similar behavior. Such elements are commonly called motifs. Comparison-based methods for sequence analysis find their application in several biological contexts, such as identification of transcription factor binding sites, finding structural and functional similarities in proteins, and phylogeny. Therefore the development of adequate methodologies for motif discovery is of paramount interests for several fields in computational biology. In motif discovery in biosequences, it is common to assume that statistically significant candidates are those that are likely to hide some biologically significant property. For this purpose all the possible candidates are ranked according to some statistics on words (frequency, over/under representation, etc.). Then they are presented in output for further inspection by a biologist, who identifies the most promising subsequences, and tests them in laboratory to confirm their biological significance. Therefore, when designing algorithms for motif discovery, besides obviously aim at time and space efficiency, particular attention should be devoted to the output representation. In fact, even considering fixed length strings, the size of the candidate set become exponential if exhaustive enumeration is applied. This is already true when only exact matches are considered as candidate occurrences, and worsen if some kind of variability (for example a fixed number of mismatches is allowed). Alternatively, heuristics could be used, however without the warranty of finding the optimal solution. Computational power of nowadays computers can partially reduce these effects, in particular for short length candidates. However, if the size of the output is too big to be analyzed by human inspection the risk is to provide biologists with very fast, but useless tools. A possible solution relies on compact approaches. Compact approaches are based on the partition of the search space into classes. The classes must be designed in such a way that the score used to rank the candidates has a monotone behavior within each class. This allows the identification of a representative of each class, which is the element with the highest score. Consequently, it suffices to compute, and report in output, the score only for the representatives. In fact, we are guaranteed that for each element that has not been ranked there is another one (the representative of the class it belongs to) that is at least equally significant. The final user can then be presented with an output that has the size of the partition, rather than the size of the candidate space, with obvious advantages for the human-based analysis that follows the computer-based filtering of the pattern discovery algorithm. Compact approaches find applications both in searching and discovery frameworks. They can also be applied to several motif models: exact patterns, patterns with given mismatch distribution, patterns with unknown mismatch distribution, profiles (i.e. matrices), and under both i.i.d. and Markov distributions. The purpose of this chapter is to describe the basis of compact approaches, to provide the readers with the conceptual tools for applying compact approaches to the design of their algorithm for biosequence analysis. Moreover, examples of compact approaches that have been successfully developed for several motif models (e.g. exact words, co-occurrences, words with mismatches, etc) will be explained, and experimental results to discuss their power will be presented

    Words and forbidden factors

    Get PDF
    AbstractGiven a finite or infinite word v, we consider the set M(v) of minimal forbidden factors of v. We show that the set M(v) is of fundamental importance in determining the structure of the word v. In the case of a finite word w we consider two parameters that are related to the size of M(w): the first counts the minimal forbidden factors of w and the second gives the length of the longest minimal forbidden factor of w. We derive sharp upper and lower bounds for both parameters. We prove also that the second parameter is related to the minimal period of the word w. We are further interested to the algorithmic point of view. Indeed, we design linear time algorithm for the following two problems: (i) given w, construct the set M(w) and, conversely, (ii) given M(w), reconstruct the word w. In the case of an infinite word x, we consider the following two functions: gx that counts, for each n, the allowed factors of x of length n and fx that counts, for each n, the minimal forbidden factors of x of length n. We address the following general problem: what information about the structure of x can be derived from the pair (gx,fx)? We prove that these two functions characterize, up to the automorphism exchanging the two letters, the language of factors of each single infinite Sturmian word

    Building Efficient and Compact Data Structures for Simplicial Complexes

    Get PDF
    The Simplex Tree (ST) is a recently introduced data structure that can represent abstract simplicial complexes of any dimension and allows efficient implementation of a large range of basic operations on simplicial complexes. In this paper, we show how to optimally compress the Simplex Tree while retaining its functionalities. In addition, we propose two new data structures called the Maximal Simplex Tree (MxST) and the Simplex Array List (SAL). We analyze the compressed Simplex Tree, the Maximal Simplex Tree, and the Simplex Array List under various settings.Comment: An extended abstract appeared in the proceedings of SoCG 201

    Foliations for solving equations in groups: free, virtually free, and hyperbolic groups

    Full text link
    We give an algorithm for solving equations and inequations with rational constraints in virtually free groups. Our algorithm is based on Rips classification of measured band complexes. Using canonical representatives, we deduce an algorithm for solving equations and inequations in hyperbolic groups (maybe with torsion). Additionnally, we can deal with quasi-isometrically embeddable rational constraints.Comment: 70 pages, 7 figures, revised version. To appear in Journal of Topolog
    corecore