31,668 research outputs found

    A bijection for rooted maps on general surfaces

    Full text link
    We extend the Marcus-Schaeffer bijection between orientable rooted bipartite quadrangulations (equivalently: rooted maps) and orientable labeled one-face maps to the case of all surfaces, that is orientable and non-orientable as well. This general construction requires new ideas and is more delicate than the special orientable case, but it carries the same information. In particular, it leads to a uniform combinatorial interpretation of the counting exponent 5(h−1)2\frac{5(h-1)}{2} for both orientable and non-orientable rooted connected maps of Euler characteristic 2−2h2-2h, and of the algebraicity of their generating functions, similar to the one previously obtained in the orientable case via the Marcus-Schaeffer bijection. It also shows that the renormalization factor n1/4n^{1/4} for distances between vertices is universal for maps on all surfaces: the renormalized profile and radius in a uniform random pointed bipartite quadrangulation on any fixed surface converge in distribution when the size nn tends to infinity. Finally, we extend the Miermont and Ambj{\o}rn-Budd bijections to the general setting of all surfaces. Our construction opens the way to the study of Brownian surfaces for any compact 2-dimensional manifold.Comment: v2: 55 pages, 22 figure

    Feynman Diagrams and Rooted Maps

    Get PDF
    The Rooted Maps Theory, a branch of the Theory of Homology, is shown to be a powerful tool for investigating the topological properties of Feynman diagrams, related to the single particle propagator in the quantum many-body systems. The numerical correspondence between the number of this class of Feynman diagrams as a function of perturbative order and the number of rooted maps as a function of the number of edges is studied. A graphical procedure to associate Feynman diagrams and rooted maps is then stated. Finally, starting from rooted maps principles, an original definition of the genus of a Feynman diagram, which totally differs from the usual one, is given.Comment: 20 pages, 30 figures, 3 table

    Asymptotic enumeration and limit laws for graphs of fixed genus

    Full text link
    It is shown that the number of labelled graphs with n vertices that can be embedded in the orientable surface S_g of genus g grows asymptotically like c(g)n5(g−1)/2−1γnn!c^{(g)}n^{5(g-1)/2-1}\gamma^n n! where c(g)>0c^{(g)}>0, and γ≈27.23\gamma \approx 27.23 is the exponential growth rate of planar graphs. This generalizes the result for the planar case g=0, obtained by Gimenez and Noy. An analogous result for non-orientable surfaces is obtained. In addition, it is proved that several parameters of interest behave asymptotically as in the planar case. It follows, in particular, that a random graph embeddable in S_g has a unique 2-connected component of linear size with high probability

    Enumeration of N-rooted maps using quantum field theory

    Full text link
    A one-to-one correspondence is proved between the N-rooted ribbon graphs, or maps, with e edges and the (e-N+1)-loop Feynman diagrams of a certain quantum field theory. This result is used to obtain explicit expressions and relations for the generating functions of N-rooted maps and for the numbers of N-rooted maps with a given number of edges using the path integral approach applied to the corresponding quantum field theory.Comment: 27 pages, 7 figure

    A bijection for rooted maps on general surfaces (extended abstract)

    Get PDF
    International audienceWe extend the Marcus-Schaeffer bijection between orientable rooted bipartite quadrangulations (equivalently: rooted maps) and orientable labeled one-face maps to the case of all surfaces, orientable or non-orientable. This general construction requires new ideas and is more delicate than the special orientable case, but carries the same information. It thus gives a uniform combinatorial interpretation of the counting exponent 5(h−1)2\frac{5(h-1)}{2} for both orientable and non-orientable maps of Euler characteristic 2−2h2-2h and of the algebraicity of their generating functions. It also shows the universality of the renormalization factor nn¼ for the metric of maps, on all surfaces: the renormalized profile and radius in a uniform random pointed bipartite quadrangulation of size nn on any fixed surface converge in distribution. Finally, it also opens the way to the study of Brownian surfaces for any compact 2-dimensional manifold.Nous étendons la bijection de Marcus et Schaeffer entre quadrangulations biparties orientables (de manière équivalente: cartes enracinées) et cartes à une face étiquetées orientables à toutes les surfaces, orientables ou non. Cette construction générale requiert des idées nouvelles et est plus délicate que dans le cas particulier orientable, mais permet des utilisations similaires. Elle donne donc une interprétation combinatoire uniforme de l’exposant de comptage 5(h−1)2\frac{5(h-1)}{2} pour les cartes orientables et non-orientables de caractéristique d’Euler 2−2h2-2h, et de l’algébricité des fonctions génératrices. Elle montre l’universalité du facteur de normalisation nn¼ pour la métrique des cartes, sur toutes les surfaces: le profil et le rayon d’une quadrangulation enracinée pointée sur une surface fixée converge en distribution. Enfin, elle ouvre à la voie à l’étude des surfaces Browniennes pour toute 2-variété compacte
    • …
    corecore