4,281 research outputs found

    Surface Split Decompositions and Subgraph Isomorphism in Graphs on Surfaces

    Get PDF
    The Subgraph Isomorphism problem asks, given a host graph G on n vertices and a pattern graph P on k vertices, whether G contains a subgraph isomorphic to P. The restriction of this problem to planar graphs has often been considered. After a sequence of improvements, the current best algorithm for planar graphs is a linear time algorithm by Dorn (STACS '10), with complexity 2O(k)O(n)2^{O(k)} O(n). We generalize this result, by giving an algorithm of the same complexity for graphs that can be embedded in surfaces of bounded genus. At the same time, we simplify the algorithm and analysis. The key to these improvements is the introduction of surface split decompositions for bounded genus graphs, which generalize sphere cut decompositions for planar graphs. We extend the algorithm for the problem of counting and generating all subgraphs isomorphic to P, even for the case where P is disconnected. This answers an open question by Eppstein (SODA '95 / JGAA '99)

    The Weisfeiler-Leman Dimension of Planar Graphs is at most 3

    Full text link
    We prove that the Weisfeiler-Leman (WL) dimension of the class of all finite planar graphs is at most 3. In particular, every finite planar graph is definable in first-order logic with counting using at most 4 variables. The previously best known upper bounds for the dimension and number of variables were 14 and 15, respectively. First we show that, for dimension 3 and higher, the WL-algorithm correctly tests isomorphism of graphs in a minor-closed class whenever it determines the orbits of the automorphism group of any arc-colored 3-connected graph belonging to this class. Then we prove that, apart from several exceptional graphs (which have WL-dimension at most 2), the individualization of two correctly chosen vertices of a colored 3-connected planar graph followed by the 1-dimensional WL-algorithm produces the discrete vertex partition. This implies that the 3-dimensional WL-algorithm determines the orbits of a colored 3-connected planar graph. As a byproduct of the proof, we get a classification of the 3-connected planar graphs with fixing number 3.Comment: 34 pages, 3 figures, extended version of LICS 2017 pape

    A cube of resolutions for knot Floer homology

    Full text link
    We develop a skein exact sequence for knot Floer homology, involving singular knots. This leads to an explicit, algebraic description of knot Floer homology in terms of a braid projection of the knot.Comment: 55 pages, 24 figure

    A correspondence between rooted planar maps and normal planar lambda terms

    Get PDF
    A rooted planar map is a connected graph embedded in the 2-sphere, with one edge marked and assigned an orientation. A term of the pure lambda calculus is said to be linear if every variable is used exactly once, normal if it contains no beta-redexes, and planar if it is linear and the use of variables moreover follows a deterministic stack discipline. We begin by showing that the sequence counting normal planar lambda terms by a natural notion of size coincides with the sequence (originally computed by Tutte) counting rooted planar maps by number of edges. Next, we explain how to apply the machinery of string diagrams to derive a graphical language for normal planar lambda terms, extracted from the semantics of linear lambda calculus in symmetric monoidal closed categories equipped with a linear reflexive object or a linear reflexive pair. Finally, our main result is a size-preserving bijection between rooted planar maps and normal planar lambda terms, which we establish by explaining how Tutte decomposition of rooted planar maps (into vertex maps, maps with an isthmic root, and maps with a non-isthmic root) may be naturally replayed in linear lambda calculus, as certain surgeries on the string diagrams of normal planar lambda terms.Comment: Corrected title field in metadat

    Three-dimensional maps and subgroup growth

    Full text link
    In this paper we derive a generating series for the number of cellular complexes known as pavings or three-dimensional maps, on nn darts, thus solving an analogue of Tutte's problem in dimension three. The generating series we derive also counts free subgroups of index nn in Δ+=Z2Z2Z2\Delta^+ = \mathbb{Z}_2*\mathbb{Z}_2*\mathbb{Z}_2 via a simple bijection between pavings and finite index subgroups which can be deduced from the action of Δ+\Delta^+ on the cosets of a given subgroup. We then show that this generating series is non-holonomic. Furthermore, we provide and study the generating series for isomorphism classes of pavings, which correspond to conjugacy classes of free subgroups of finite index in Δ+\Delta^+. Computational experiments performed with software designed by the authors provide some statistics about the topology and combinatorics of pavings on n16n\leq 16 darts.Comment: 17 pages, 6 figures, 1 table; computational experiments added; a new set of author
    corecore