4 research outputs found

    On the Quantitative Hardness of CVP

    Full text link
    \newcommand{\eps}{\varepsilon} \newcommand{\problem}[1]{\ensuremath{\mathrm{#1}} } \newcommand{\CVP}{\problem{CVP}} \newcommand{\SVP}{\problem{SVP}} \newcommand{\CVPP}{\problem{CVPP}} \newcommand{\ensuremath}[1]{#1} For odd integers p≥1p \geq 1 (and p=∞p = \infty), we show that the Closest Vector Problem in the ℓp\ell_p norm (\CVP_p) over rank nn lattices cannot be solved in 2^{(1-\eps) n} time for any constant \eps > 0 unless the Strong Exponential Time Hypothesis (SETH) fails. We then extend this result to "almost all" values of p≥1p \geq 1, not including the even integers. This comes tantalizingly close to settling the quantitative time complexity of the important special case of \CVP_2 (i.e., \CVP in the Euclidean norm), for which a 2n+o(n)2^{n +o(n)}-time algorithm is known. In particular, our result applies for any p=p(n)≠2p = p(n) \neq 2 that approaches 22 as n→∞n \to \infty. We also show a similar SETH-hardness result for \SVP_\infty; hardness of approximating \CVP_p to within some constant factor under the so-called Gap-ETH assumption; and other quantitative hardness results for \CVP_p and \CVPP_p for any 1≤p<∞1 \leq p < \infty under different assumptions

    COUNTING LATTICE VECTORS

    Get PDF
    Abstract. We consider the problem of counting the number of lattice vectors of a given length and prove several results regarding its computational complexity. We show that the problem is ♯Pcomplete resolving an open problem. Furthermore, we show that the problem is at least as hard as integer factorization even for lattices of bounded rank or lattices generated by vectors of bounded norm. Next, we discuss a deterministic algorithm for counting the number of lattice vectors of length d in time 2 O(rs+log d) , where r is the rank of the lattice, s is the number of bits that encode the basis of the lattice. The algorithm is based on the theory of modular forms

    Counting Lattice Vectors

    No full text
    We consider the problem of counting the number of lattice vectors of a given length. We show that problem is #P-complete resolving an open problem. Furthermore, we show that the problem is at least as hard as integer factorization even for lattices of bounded rank or lattices generated by vectors of bounded norm. Next, we discuss a deterministic algorithm for counting the number of lattice vectors of length d in time .Z0(rs+109d) , where 1- is the rank of the lattice, s is the number of bits that encode the basis of the lattice. The algorithm is based on the theory of modular forms
    corecore