1,155 research outputs found

    Counting Independent Sets and Colorings on Random Regular Bipartite Graphs

    Get PDF
    We give a fully polynomial-time approximation scheme (FPTAS) to count the number of independent sets on almost every Delta-regular bipartite graph if Delta >= 53. In the weighted case, for all sufficiently large integers Delta and weight parameters lambda = Omega~ (1/(Delta)), we also obtain an FPTAS on almost every Delta-regular bipartite graph. Our technique is based on the recent work of Jenssen, Keevash and Perkins (SODA, 2019) and we also apply it to confirm an open question raised there: For all q >= 3 and sufficiently large integers Delta=Delta(q), there is an FPTAS to count the number of q-colorings on almost every Delta-regular bipartite graph

    Efficient and Robust Compressed Sensing Using Optimized Expander Graphs

    Get PDF
    Expander graphs have been recently proposed to construct efficient compressed sensing algorithms. In particular, it has been shown that any n-dimensional vector that is k-sparse can be fully recovered using O(klog n) measurements and only O(klog n) simple recovery iterations. In this paper, we improve upon this result by considering expander graphs with expansion coefficient beyond 3/4 and show that, with the same number of measurements, only O(k) recovery iterations are required, which is a significant improvement when n is large. In fact, full recovery can be accomplished by at most 2k very simple iterations. The number of iterations can be reduced arbitrarily close to k, and the recovery algorithm can be implemented very efficiently using a simple priority queue with total recovery time O(nlog(n/k))). We also show that by tolerating a small penal- ty on the number of measurements, and not on the number of recovery iterations, one can use the efficient construction of a family of expander graphs to come up with explicit measurement matrices for this method. We compare our result with other recently developed expander-graph-based methods and argue that it compares favorably both in terms of the number of required measurements and in terms of the time complexity and the simplicity of recovery. Finally, we will show how our analysis extends to give a robust algorithm that finds the position and sign of the k significant elements of an almost k-sparse signal and then, using very simple optimization techniques, finds a k-sparse signal which is close to the best k-term approximation of the original signal

    Minimum degree conditions for monochromatic cycle partitioning

    Get PDF
    A classical result of Erd\H{o}s, Gy\'arf\'as and Pyber states that any rr-edge-coloured complete graph has a partition into O(r2logr)O(r^2 \log r) monochromatic cycles. Here we determine the minimum degree threshold for this property. More precisely, we show that there exists a constant cc such that any rr-edge-coloured graph on nn vertices with minimum degree at least n/2+crlognn/2 + c \cdot r \log n has a partition into O(r2)O(r^2) monochromatic cycles. We also provide constructions showing that the minimum degree condition and the number of cycles are essentially tight.Comment: 22 pages (26 including appendix
    corecore