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Abstract
We give a fully polynomial-time approximation scheme (FPTAS) to count the number of independent
sets on almost every ∆-regular bipartite graph if ∆ ≥ 53. In the weighted case, for all sufficiently
large integers ∆ and weight parameters λ = Ω̃

(
1
∆

)
, we also obtain an FPTAS on almost every

∆-regular bipartite graph. Our technique is based on the recent work of Jenssen, Keevash and
Perkins (SODA, 2019) and we also apply it to confirm an open question raised there: For all q ≥ 3
and sufficiently large integers ∆ = ∆(q), there is an FPTAS to count the number of q-colorings on
almost every ∆-regular bipartite graph.
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1 Introduction

Counting independent sets on bipartite graphs (#BIS) plays a significant role in the field of
approximate counting. A wide range of counting problems in the study of counting CSPs
[14, 6, 15] and spin systems [19, 20, 17, 7], have been proved to be #BIS-equivalent or #BIS-
hard under approximation-preserving reductions (AP-reductions) [13]. Despite its great
importance, it is still unknown whether #BIS admits a fully polynomial-time approximation
scheme (FPTAS) or it is as hard as counting the number of satisfying assignments of Boolean
formulas (#SAT) under AP-reduction.

In this paper, we consider the problem of approximating #BIS (and its weighted version)
on random regular bipartite graphs. Random regular bipartite graphs frequently appear
in the analysis of hardness of counting independent sets [34, 12, 38, 39, 17]. Therefore,
understanding the complexity of #BIS on such graphs is potentially useful for gaining
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34:2 Counting Independent Sets and Colorings on Random Regular Bipartite Graphs

insights into the general case. Let Z(G,λ) =
∑
I∈I(G) λ

|I| where I(G) is the set of all
independent sets of a graph G and λ > 0 is the weight parameter. This function also arises
in the study of the hardcore model of lattice gas systems in statistical mechanics. Hence we
usually call Z(G,λ) the partition function of the hardcore model with fugacity λ.

In the case where input graphs are allowed to be nonbipartite, the approximability for
counting the number of independent sets (#IS) is well understood. Exploiting the correlation
decay properties of Z(G,λ), Weitz [41] presented an FPTAS for graphs of maximum degree
∆ at fugacity λ < λc(∆) = (∆−1)∆−1

(∆−2)∆ . On the hardness side, Sly [38] proved that, unless
NP = RP, there is a constant ε = ε(∆) that no polynomial-time approximation scheme exists
for Z(G,λ) on graphs of maximum degree ∆ at fugacity λc(∆) < λ < λc(∆) + ε(∆). Later,
this result was improved at any fugacity λ > λc(∆) [39, 16]. In particular, these results state
that if ∆ ≤ 5, there is an FPTAS for #IS on graphs of maximum degree ∆, otherwise there
is no efficient approximation algorithm unless NP = RP.

The situation is different on bipartite graphs. No NP-hardness result is known even on
graphs with unbounded degree. Surprisingly, Liu and Lu [29] designed an FPTAS for #BIS
which only requires one side of the vertex partition to be of maximum degree ∆ ≤ 5. On
the other hand, it is #BIS-hard to approximate Z(G,λ) at fugacity λ > λc(∆) on biparite
graphs of maximum degree ∆ ≥ 3 [7].

Recently, Helmuth, Perkins, and Regts [25] developed a new approach via the polymer
model and gave efficient counting and sampling algorithms for the hardcore model at high
fugacity on certain finite regions of the lattice Zd and on the torus (Z/nZ)d. Their approach
is based on a long line of work [36, 37, 28, 1, 2, 35]. Shortly after that, Jenssen, Keevash,
and Perkins [26] designed an FPTAS for the hardcore model at high fugacity on bipartite
expander graphs of bounded degree. And they further extended the result to random
∆-regular bipartite graphs with ∆ ≥ 3 at fugacity λ > (2e)250. This is the first efficient
algorithm for the hardcore model at fugacity λ > λc(∆) on random regular bipartite graphs.
A natural question is, can we design FPTAS for lower fugacity and in particular the problem
#BIS on random regular bipartite graphs? Indeed, we obtain such results. Let Gbip

n,∆ denote
the set of all ∆-regular bipartite graphs with n vertices on both sides.

I Theorem 1. For ∆ ≥ 53 and fugacity λ ≥ 1, with high probability (tending to 1 as n→∞)
for a graph G chosen uniformly at random from Gbip

n,∆, there is an FPTAS for the partition
function Z(G,λ).

I Theorem 2. For all sufficiently large integers ∆ and fugacity λ = Ω̃
( 1

∆
) 1, with high

probability (tending to 1 as n→∞) for a graph G chosen uniformly at random from Gbip
n,∆,

there is an FPTAS for the partition function Z(G,λ).

For notational convenience, we use the term “on almost every ∆-regular bipartite graph”
to denote that a property holds with high probability (tending to 1 as n→∞) for randomly
chosen graphs from Gbip

n,∆.
Counting proper q-colorings on a graph is another extensively studied problem in the field

of approximate counting [27, 4, 5, 10, 23, 22, 33, 9, 24, 18, 11, 31, 21]. In general graphs,
if the number of colors q is no more than the maximum degree ∆, there may not be any
proper coloring over the graph. Therefore, approximate counting is studied in the range that
q ≥ ∆ + 1. It was conjectured that there is an FPTAS if q ≥ ∆ + 1, but the current best
result is q ≥ α∆ + 1 with a constant α slightly below 11

6 [40, 8]. The conjecture was only
confirmed for the special case ∆ = 3 [30].

1 This means that λ ≥ (c1 logc2 ∆)/∆ for some constants c1, c2 > 0.
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On bipartite graphs, the situation is quite different. For any q ≥ 2, we know that there
always exist proper q-colorings for every bipartite graph. For any q ≥ 3, it is shown to be
#BIS-hard but unknown to be #BIS-equivalent [13]. Using a technique analogous to that
for #BIS, we obtain an FPTAS to count the number of q-colorings on random ∆-regular
bipartite graphs for all sufficiently large integers ∆ = ∆(q) for any q ≥ 3.

I Theorem 3. For q ≥ 3 and ∆ ≥ 100q10 where q = dq/2e, with high probability (tending
to 1 as n→∞) for a graph chosen uniformly at random from Gbip

n,∆, there is an FPTAS to
count the number of q-colorings.

This result confirms a conjecture in [26].

Our Technique
The classical approach to designing approximate counting algorithms is random sampling via
Markov chain Monte Carlo (MCMC). However, it is known that the Markov chains are slowly
mixing on random bipartite graphs for both independent set and coloring if the degree ∆ is
not too small. Taking #BIS as an example, a typical independent set of a random regular
bipartite graph of degree at least 6 is unbalanced: it either chooses most of its vertices from
the left side or the right side. Thus, starting from an independent set with most vertices
from the left side, a Markov chain is unlikely to reach an independent set with most of its
vertices from the right side in polynomial time.

Even so, a recent beautiful work exactly makes use of the above separating property to
design approximate counting algorithms [26]. By making the fugacity λ > (2e)250 sufficiently
large, they proved that largest contribution to the partition function comes from extremely
unbalanced independent sets, those which occupy almost no vertices on one side and almost
all vertices on the other side. In particular, for a bipartite graph G = (L,R, E) with n

vertices on both sides, they identified two independent sets I = L and I = R as ground
states as they have the largest weight λn among all the independent sets. They proved that
one only needs to sum up the weights of states which are close to one of the ground states,
for no state is close to both ground states and the contribution from the states which are far
away from both ground states is exponentially small.

However, the ground state idea cannot be directly applied to counting independent sets
and counting colorings since each valid configuration is of the same weight. We extend the
idea of ground states to ground clusters, which is not a single configuration but a family
of configurations. For example, we identify two ground clusters for independent sets, those
which are entirely chosen from vertices on the left side and those which are entirely chosen
entirely from vertices on the right side. If a set of vertices is entirely chosen from vertices
on one side, it is obviously an independent set. Thus each cluster contains 2n different
independent sets. Similarly, we want to prove that we can count the configurations which
are close to one of the ground clusters and then add them up. For counting colorings, there
are multiple ground clusters indexed by a subset of colors ∅ ( X ( [q]: colorings which color
L only with colors from X and color R only with colors from [q] \X.

Unlike the ground states in [26], our ground clusters may overlap with each other and
some configurations are close to more than one ground cluster. In addition to proving that
the number of configurations which are far away from all ground clusters is exponentially
small, we also need to prove that the number of double counted configurations is small.

After identifying ground states and with respect to a fixed ground state, Jenssen, Keevash,
and Perkins [26] defined a polymer model representing deviations from the ground state
and rewrote the original partition function as a polymer partition function. We follow this

APPROX/RANDOM 2019



34:4 Counting Independent Sets and Colorings on Random Regular Bipartite Graphs

idea and define a polymer model representing deviations from a ground cluster. However,
deviation from a ground cluster is much subtler than deviation from a single ground state.
For example, if we define polymer as connected components from the deviated vertices in
the graph, we cannot recover the original partition function from the polymer partition
function. We overcome this by defining polymer as connected components in the graph G2,
where an edge of G2 corresponds to a path of length at most 2 in the original graph. Here,
a compatible set of polymers also corresponds to a family of configurations in the original
problem, while it corresponds to a single configuration in [26].

It is much more common in counting problems that most contribution is from a neighbor-
hood of some clusters rather than a few isolated states. So, we believe that our development
of the technique makes it suitable for a much broader family of problems.

Organization of the paper
In this 10-page version, we only prove Theorem 1 which already explains the key technique
for proving Theorem 2 and Theorem 3. The complete proof (and the modifications necessary)
for these two can be found in the full version. In Section 2 we review necessary definitions
and facts. In Section 3 we prove Theorem 1, where the proof is divided into four parts. The
first part deals with the property of the independent sets on certain graphs. The second part
uses the polymer model to approximate the number of independent sets. The third part
discusses how to approximate the partition function of the polymer model. The last part
puts these things together.

Independent work
Towards the end of this project, we learned that the authors of [26] obtained similar results
in their upcoming journal version submission.

2 Preliminaries

2.1 Independent sets and random regular bipartite graphs
All graphs considered in this paper are unweighted, undirected, with no loops but may
have multiple edges. Let G = (V,E) be a graph. We use dG(u,w) to denote the dis-
tance between two vertices u,w in the graph G. For ∅ ( U,W ⊆ V , define dG(U,W ) =
minu∈U,w∈W dG(u,w). Let U ⊆ V be a nonempty set. Let NG(U) = {v ∈ V : dG({v} , U) = 1}
to be the neighborhood of U and emphasize that NG(U) ∩ U = ∅. We use G[U ] to denote
the induced subgraph of G on U . Let E2 be the set of unordered pairs (u, v) such that u 6= v

and dG(u, v) ≤ 2. We define G2 to be the graph (V,E2). It is clear that if the maximum
degree of G is at most ∆, then the maximum degree of G2 is at most ∆2. An independent
set of the graph G is a subset U ⊆ V such that (u,w) 6∈ E for any u,w ∈ U . We use I(G)
to denote the set of all independent sets of G. The weight of an independent set I is λ|I|
where λ > 0 is a parameter called fugacity. We use Z(G,λ) =

∑
I∈I(G) λ

|I| to denote the
partition function of the graph G. Clearly, Z(G, 1) is the number of indepndent sets of G.

For two positive real numbers a and b, we say a is an ε-relative approximation to b
for some ε > 0 if exp(−ε)b ≤ a ≤ exp(ε)b, or equivalently exp(−ε)a ≤ b ≤ exp(ε)a. A
fully polynomial-time approximation scheme (FPTAS) is an algorithm that for every ε > 0
outputs an ε-relative approximation to Z(G) in time (|G|/ε)C for some constant C > 0,
where Z(G) is some quantity, like the number of independent sets, of graphs G that we would
like to compute.
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We use G ∼ Gbip
n,∆ to denote sampling a ∆-regular bipartite graph G with n vertices

on both sides uniformly at random. We say a ∆-regular bipartite graph G = (L,R, E)
with n vertices on both sides is an (α, β)-expander if for all subsets U ⊆ L or U ⊆ R with
|U | ≤ αn, |N(U)| ≥ β|U |. This property is called the expansion property of G. We use G∆

α,β

to denote the set of all ∆-regular bipartite (α, β)-expanders. It is known that a random
regular bipartite graph is an expander with high probability.

2.2 The polymer model
Let G be a graph and Ω be a finite set. A polymer γ = (γ, ωγ) consists of a support γ
which is a connected subgraph of G and a mapping ωγ which assigns to each vertex in γ
some value in Ω. We use |γ| to denote the number of vertices of γ. There is also a weight
function w(γ, ·) : C→ C for each polymer γ. There can be many polymers defined on the
graph G and we use Γ∗ = Γ∗(G) to denote the set of all polymers defined on it. However,
at the moment we do not give a constructive definition of polymers. Such definitions are
presented when they are needed, see Section 3.2. We say two polymers γ1 and γ2 are
compatible if dG(γ1, γ2) > 1 and we use γ1 ∼ γ2 to denote that they are compatible. For
a subset Γ ⊆ Γ∗ of polymers, it is compatible if any two different polymers in this set
are compatible. We define S(Γ∗) = {Γ ⊆ Γ∗ : Γ is compatible} to be the collection of all
compatible subsets of polymers. For Γ ∈ S(Γ∗), we also define

∣∣Γ∣∣ to be the number of
vertices of the subgraph Γ and let ωΓ be a mapping which assigns each vertex v ∈ Γ the
value that ωγ assigns to v where γ is the unique polymer whose support contains vertex v.
We say (Γ∗, w) is a polymer model defined on the graph G and the partition function of
this polymer model is Ξ(G, z) =

∑
Γ∈S(Γ∗)

∏
γ∈Γ w(γ, z), where z is a complex variable and∏

γ∈∅ w(γ, z) = 1 by convention. The following theorem states conditions that Ξ(G, z) can
be approximated efficiently.

I Theorem 4 ([25], Theorem 2.2). Fix ∆ and let G be a set of graphs of degree at most ∆.
Suppose:

There is a constant C such that for all G ∈ G, the degree of Ξ(G, z) is at most C|G|.
For all G ∈ G and γ ∈ Γ∗(G), w(γ, z) = aγz

|γ| where aγ 6= 0 can be computed in time
exp(O(|γ|+ log2 |G|)).
For every connected subgraph G′ of every G ∈ G, we can list all polymers γ ∈ Γ∗(G) with
γ = G′ in time exp(O(|G′|)).
There is a constant R > 0 such that for all G ∈ G and z ∈ C with |z| < R, Ξ(G, z) 6= 0.

Then for every z with |z| < R, there is an FPTAS for Ξ(G, z) for all G ∈ G.

The following condition by Koteckỳ and Preiss (KP-condition) is useful to show that
Ξ(G, z) is zero-free in certain regions.

I Lemma 5 ([28]). Suppose there is a function a : Γ∗ → R>0 and for every γ∗ ∈ Γ∗,∑
γ: γ 6∼γ∗

ea(γ)|w(γ, z)| ≤ a(γ∗). Then Ξ(G, z) 6= 0.

To verify the KP-condition, usually we need to enumerate polymers and the following
lemma is useful to bound the number of enumerated polymers.

I Lemma 6 ([3]). For any graph G = (V,E) with maximum degree ∆ and v ∈ V , the
number of connected induced subgraphs of order k ≥ 2 containing v is at most (e∆)k−1/2.
As a corollary, the number of connected induced subgraphs of order k ≥ 1 containing v is at
most (e∆)k−1.

APPROX/RANDOM 2019



34:6 Counting Independent Sets and Colorings on Random Regular Bipartite Graphs

2.3 Some useful lemmas
Throughout this paper, we use H(x) to denote the binary entropy function

H(x) = −x log2 x− (1− x) log2(1− x), x ∈ (0, 1).

Moreover, we extend this function to the interval [0, 1] by defining H(0) = H(1) = 0. This is
reasonable since limx→0+ H(x) = limx→1− H(x) = 0.

I Lemma 7. It holds that H(x) ≤ 2
√
x(1− x) ≤ 2

√
x for all 0 ≤ x ≤ 1.

I Lemma 8 ([32, Lemma 10.2]). Suppose that n is a positive integer and k ∈ [0, 1] is a
number such that kn is an integer. Then 2H(k)n

n+1 ≤
(
n
kn

)
≤ 2H(k)n.

I Lemma 9. For b > a > 0, the function f(λ) = λa/(λ+ 1)b is monotonically increasing on
[0, a

b−a ] and monotonically decreasing on [ a
b−a ,+∞).

3 Counting independent sets for λ ≥ 1

Throughout this section, we consider integers ∆ ≥ 53, fugacity λ ≥ 1 and set parameters
ζ, α, β to be ζ = 1.28, α = 2.9

∆ , β = ∆
2.9ζ .

I Lemma 10. For ∆ ≥ 53, lim
n→∞

Pr
G∼Gbip

n,∆

[
G ∈ G∆

α,β

]
= 1.

The reader can find the detailed proof of the lemma above in the full version of the paper.
In the rest of this section, whenever possible, we will simplify notations by omitting

superscripts, subscripts and brackets with the symbols between (but this will not happen in
the statement of lemmas and theorems). For example, Z(G,λ) may be written as Z if G
and λ are clear from context.

3.1 Approximating Z(G, λ)
For all G = (L,R, E) ∈ G∆

α,β ,X ∈ {L,R} and λ ≥ 1, let IX (G) = {I ∈ I(G) : |I ∩ X | < αn}
and ZX (G,λ) =

∑
I∈IX (G) λ

|I|. The main result in this part is that we can use ZL(G,λ) +
ZR(G,λ) to approximate Z(G,λ).

I Lemma 11. For ∆ ≥ 53 and λ ≥ 1, there are constants C = C(∆) > 1 and N = N(∆) so
that for all G ∈ G∆

α,β with n > N vertices on both sides, ZL(G,λ)+ZR(G,λ) is a C−n-relative
approximation to Z(G,λ).

Proof. Apply Lemma 12 and Lemma 13. J

I Lemma 12. For ∆ ≥ 3 and λ ≥ 1, there are constants C = C(∆) > 1 and N = N(∆) so
that for all G ∈ G∆

α,β with n > N vertices on both sides,
∑
I∈IL(G)∪IR(G) λ

|I| is a C−n-relative
approximation to Z(G,λ).

Proof. Let B = I \ (IL ∪ IR). For any I ∈ B, it follows from the definition of B that
|I ∩ L| ≥ αn and |I ∩R| ≥ αn. Using the expansion property, we obtain |N(I ∩ L)| ≥ βbαnc
and thus |I ∩R| ≤ n − |N(I ∩ L)| ≤ (1 − 1/t)n where 1/t = βbαnc/n ≥ αβ − β/n.
Analogously, it holds that |I ∩ L| ≤ (1 − 1/t)n. In the following, we assume n ≥ N1
for some N1 = N1(∆) > 0, such that 1− 1/t ≤ 1− αβ + β/n = 1− 1/ζ + β/n ≤ 0.219. We
obtain an upper bound of

∑
I∈B λ

|I| as follows:
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(a) Consider an independent set I ∈ B. Recall that αn ≤ |I ∩ L| ≤ (1 − 1/t)n. We first
enumerate a subset U ⊆ L with αn ≤ |U | ≤ (1−1/t)n and then enumerate all independent
sets I with I ∩L = U . Since 1−1/t < 1/2, there are at most n

(
n

b(1−1/t)nc
)
≤ n2H(1−1/t)n

ways to enumerate such a set U , where the inequality follows from Lemma 8.
(b) Now fix a set U ⊆ L. Recall that every independent set I ∈ B satisfies |I ∩R| ≤ (1−1/t)n.

Therefore
∑
I∈B: |I∩L|=U λ

|I| = λ|U |
∑
I∈B: |I∩L|=U λ

|I∩R| ≤ λ(1−1/t)n (λ+ 1)(1−1/t)n.
(c) Combining the first two steps we obtain

∑
I∈B λ

|I| ≤ n2H(1−1/t)nλ(1−1/t)n(λ+ 1)(1−1/t)n =
n2H(1−1/t)n(λ2 + λ)(1−1/t)n.

Using
∑
I∈IL∪IR λ

|I| ≥ (λ+ 1)n and the upper bound above, we obtain∑
I∈B λ

|I|∑
I∈IL∪IR λ

|I| ≤
n2H(1−1/t)n(λ2 + λ)(1−1/t)n

(λ+ 1)n = n(f(λ))n, (1)

where f(λ) = 2H(1−1/t) · λ1−1/t

(λ+1)1/t . Since 1 − 1/t < 1/t, it follows from Lemma 9 that
f(λ) ≤ f(1) = 2H(1−1/t)−1/t < 1 for all λ ≥ 1. So there exists some constant C > 1 such that
Equation (1) ≤ n(f(1))n < C−n for all n > N ≥ N1 where N = N(∆) is another sufficiently
large constant. J

I Lemma 13. For ∆ ≥ 53 and λ ≥ 1, there are constants C > 1 and N so that for
all G ∈ G∆

α,β with n > N vertices on both sides, ZL(G,λ) + ZR(G,λ) is a C−n-relative
approximation to

∑
I∈IL(G)∪IR(G) λ

|I|.

Proof. For any I ∈ IL ∩ IR, it holds that |I ∩ L| < αn and |I ∩R| < αn. Clearly∑
I∈IL∪IR λ

|I| ≥ (λ+ 1)n. Therefore

∑
I∈IL∩IR λ

|I|∑
I∈IL∪IR λ

|I| ≤ (λ+ 1)−n
bαnc∑
k=0

(
n

k

)
λk

2

≤ n2
(

4H(α)λ2α

λ+ 1

)n
, (2)

where the last inequality follows from Lemma 8. Recall that α = 2.9/∆ and ∆ ≥ 53. Then
4H(α)λ2α

λ+1

∣∣∣∣
λ=1
≤ 0.76 < 1. It follows from Lemma 9 that 4H(α)λ2α/(λ+ 1) is monotonically

decreasing in λ on [1,∞) for all fixed ∆ ≥ 53. Thus Equation (2) ≤
(
1/
(
0.76n2/n))−n < C−n

for some constant C > 1 and for all n > N where N is a sufficiently large constant. J

3.2 Approximating ZX (G, λ)
In this subsection, we discuss how to approximate ZX (G,λ) for any graph G ∈ G∆

α,β ,X ∈
{L,R} and λ ≥ 1. We will use the polymer model (see Section 2.2). First we constructively
define the polymers we need. For any I ∈ IX (G), we can partition the graph (G2)[I ∩ X ]
into connected components U1, U2, . . . , Uk for some k ≥ 0 (trivially k = 0 if I ∩ X = ∅).
There are no edges in G2 between Ui and Uj for any 1 ≤ i 6= j ≤ k. If k > 0, let
p(I) = {(U1,1U1), (U2,1U2), . . . , (Uk,1Uk)} where 1Ui is the unique mapping from Ui to {1}.
If k = 0, let p(I) = ∅. We define the set of all polymers to be Γ∗X (G) =

⋃
I∈IX (G) p(I)

and each element in this set is called a polymer. When the graph G and X are clear from
the context, we simply denote by Γ∗ the set of polymers. Clearly, p is a mapping from
IX (G) to the set

{
Γ ∈ S(Γ∗X (G)) :

∣∣Γ∣∣ < αn
}
since

∣∣∣p(I)
∣∣∣ = |I ∩ X | < αn for all I ∈ IX (G).

For each polymer γ, define its weight function w(γ, ·) as w(γ, z) = λ|γ|(λ + 1)−|N(γ)|z|γ|,
where z is a complex variable. The weight function can be computed in polynomial time in
|γ|. The partition function of the polymer model (Γ∗, w) on the graph G2 is the following
sum: Ξ(z) =

∑
Γ∈S(Γ∗)

∏
γ∈Γ w(γ, z). Recall that two polymers γ1 and γ2 are compatible if

dG2(γ1, γ2) > 1 and this condition is equivalent to dG(γ1, γ2) > 2.

APPROX/RANDOM 2019



34:8 Counting Independent Sets and Colorings on Random Regular Bipartite Graphs

I Lemma 14. For all bipartite graphs G = (L,R, E) with n vertices on both sides, X ∈
{L,R} and λ ≥ 0,

ZX (G,λ) = (λ+ 1)n
∑

Γ∈S(Γ∗X (G)): |Γ|<αn

∏
γ∈Γ

w(γ, 1).

Proof. In the definition of polymers, p is a mapping from IX to
{

Γ ∈ S(Γ∗) :
∣∣Γ∣∣ < αn

}
.

Thus ZX (G,λ) =
∑
I∈IX λ

|I| =
∑

Γ∈S(Γ∗): |Γ|<αn
∑
I∈IX : p(I)=Γ λ

|I|. Fix Γ ∈ S(Γ∗) with∣∣Γ∣∣ < αn. It holds that∑
I∈IX : p(I)=Γ

λ|I| =
∑

I∈IX : I∩X=Γ

λ|I| = λ|Γ|(λ+ 1)|(LtR)\(XtNG(Γ))|, (3)

where the last equality follows from
∣∣Γ∣∣ < αn. Since Γ is compatible, NG(Γ) = tγ∈ΓNG(γ)

and
∣∣(L tR) \ (X tNG(Γ))

∣∣ = n −
∑
γ∈Γ |NG(γ)|. Thus Equation (3) = λ

∑
γ∈Γ
|γ|(λ +

1)n−
∑

γ∈Γ
N(γ) = (λ+ 1)n

∏
γ∈Γ λ

|γ|(λ+ 1)−|N(γ)| = (λ+ 1)n
∏
γ∈Γ w(γ, 1). J

I Lemma 15. For ∆ ≥ 53 and λ ≥ 1, there are constants C > 1 and N so that for all
G = (L,R, E) ∈ G∆

α,β with n > N vertices on both sides and X ∈ {L,R},

(λ+ 1)nΞ(1) = (λ+ 1)n
∑

Γ∈S(Γ∗X (G))

∏
γ∈Γ

w(γ, 1)

is a C−n-relative approximation to ZX (G,λ).

Proof. It is clear that ZX (G,λ) ≥ (λ+ 1)n. Then using Lemma 14 and Lemma 16 we obtain

ρ = (λ+ 1)nΞ(1)− ZX (G,λ)
ZX (G,λ) ≤

∑
Γ∈S(Γ∗): |Γ|≥αn

∏
γ∈Γ

w(γ, 1) ≤
∑

Γ∈S(Γ∗): |Γ|≥αn
2−β|Γ|. (4)

To enumerate each Γ ∈ S(Γ∗) with
∣∣Γ∣∣ ≥ αn at least once, we first enumerate an integer

αn ≤ k ≤ n, then since Γ ⊆ X , we choose k vertices from X . Therefore, from Equation (4)
we have

ρ ≤
n∑

k=dαne

(
n

k

)
2−βk ≤

n∑
k=dαne

2H(k/n)n2−βk ≤
n∑

k=dαne

(
22
√
n/k−β

)k
≤

n∑
k=dαne

(
22
√

1/α−β
)k

,

where the inequalities follow from Lemma 8 and Lemma 7. Recall that ζ = 1.28, α =
2.9/∆, β = ∆/(2.9ζ) and ∆ ≥ 53. Let f(∆) = 2

√
1/α − β = 2

√
∆/2.9 − ∆/(2.9ζ). We

obtain ρ ≤ 2f(∆)αn

1−2f(∆) =

(
22
√

2.9/∆−1/ζ
)n

1−2f(∆) . Since f(∆) is monotonically decreasing in ∆ on

[53,+∞), ρ ≤

(
22
√

2.9/53−1/1.28
)n

1−22
√

53/2.9−53/(2.9×1.28)
≤ 0.81n/0.98 < C−n for some constant C > 1 and for

all n > N where N is a sufficiently large constant. J

I Lemma 16. For all polymers γ ∈ Γ∗ defined by G = (L,R, E) ∈ G∆
α,β, X ∈ {L,R}

and λ ≥ 1, |w(γ, z)| ≤ (2−β |z|)|γ|. As a corollary, w(γ, 1) ≤ 2−β|γ| and for all compatible
Γ ⊆ Γ∗(G),

∏
γ∈Γ w(γ, 1) ≤ 2−β|Γ|.

Proof. Let n = |L| = |R| and let γ be any polymer. It follows from the definition of polymers
that |γ| ≤ αn and by the expansion property, |N(γ)| ≥ β|γ|. Thus we have |w(γ, z)| =
λ|γ|(λ+ 1)−|N(γ)||z||γ| ≤ (λ(λ+ 1)−β)|γ||z||γ| ≤ (2−β |z|)|γ| where the last inequality follows
from Lemma 9 since β > 1 and λ ≥ 1. In particular, w(γ, 1) ≤ 2−β|γ|. For any compatible Γ,
it holds that

∣∣Γ∣∣ =
∑
γ∈Γ |γ|. Thus

∏
γ∈Γ w(γ, 1) ≤

∏
γ∈Γ 2−β|γ| = 2−β|Γ|. J
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3.3 Approximating the partition function of the polymer model
I Lemma 17. For ∆ ≥ 53 and λ ≥ 1, there is an FPTAS for Ξ(1) for all G = (L,R, E) ∈
G∆
α,β and X ∈ {L,R}.

Proof. Apply the FPTAS in Theorem 4. J

To apply Theorem 4, we need to show that for the parameters in Lemma 17, the partition
function has no zeros in the entire unit disk centered at 0.

I Lemma 18. There is a constant R > 1 so that for ∆ ≥ 53 and λ ≥ 1, Ξ(z) 6= 0 for all
G ∈ G∆

α,β, X ∈ {L,R} and z ∈ C with |z| < R.

Proof. Set R = 1.001. For any γ ∈ Γ∗, let a(γ) = t|γ| where t =
(
−1 +

√
1 + 8e

)
/(4e) ≈

0.346. We will verify that the KP-condition
∑
γ:γ 6∼γ∗ e

t|γ||w(γ, z)| ≤ t
∣∣γ∗∣∣ holds for any

γ∗ ∈ Γ∗ and any |z| < R. It then follows from Lemma 5 that Ξ(z) 6= 0 for any
|z| < R. Recall that dG2(γ, γ∗) ≤ 1 for all γ 6∼ γ∗. Thus there is always a vertex
v ∈ γ ⊆ X such that v ∈ γ∗ t NG2(γ∗). The number of such vertices v is at most
∆2
∣∣γ∗∣∣. So to enumerate each γ 6∼ γ∗ at least once, we can: a) first enumerate a

vertex v in X ∩
(
γ∗ ∪NG2(γ∗)

)
; b) then enumerate an integer k from 1 to bαnc; c) fi-

nally enumerate γ with v ∈ γ and |γ| = k. Since γ is connected in G2, applying
Lemma 6 and using Lemma 16 to bound |w(γ, z)| we obtain

∑
γ:γ 6∼γ∗ e

t|γ||w(γ, z)| ≤
∆2
∣∣γ∗∣∣ (et2−β |z|+∑bαnck=2

(
e∆2)k−1 2−1etk2−βk|z|k

)
. Let x = et+1∆22−βR. Since |z| < R,

we obtain
∑
γ:γ 6∼γ∗ e

t|γ||w(γ, z)| ≤ x
e

∣∣γ∗∣∣ (1 + 1
2
∑∞
k=2 x

k−1) = x(2−x)
2e(1−x) ·

∣∣γ∗∣∣. Recall that
ζ = 1.28, β = ∆/(2.9ζ) and ∆ ≥ 53. Since ∆22−β is monotonically decreasing in ∆
on [53,+∞), it holds that x = et+1∆22−βR ≤

(
et+1∆22−βR

) ∣∣
∆=53 ≤ 0.545, and hence

x(2−x)
2e(1−x) < 0.33 < t. J

3.4 Putting things together
Using the results from previous parts, we obtain our main result for counting independent sets.

I Theorem 1. For ∆ ≥ 53 and fugacity λ ≥ 1, with high probability (tending to 1 as n→∞)
for a graph G chosen uniformly at random from Gbip

n,∆, there is an FPTAS for the partition
function Z(G,λ).

Proof. This theorem follows from Lemma 10 and Lemma 19. J

I Lemma 19. For ∆ ≥ 53 and λ ≥ 1, there is an FPTAS for Z(G,λ) for all G ∈ G∆
α,β.

Proof. First we state our algorithm. See Algorithm 1 for a pseudocode description. The
input is a graph G = (L,R, E) ∈ G∆

α,β and an approximation parameter ε > 0. The output is
a number Ẑ to approximate Z(G,λ). We use ΞX (z) to denote the partition function of the
polymer model (Γ∗X (G), w) for X ∈ {L,R}. Let N1, C2, N2, C2 be the constants in Lemma 11
and Lemma 15, respectively. These two lemmas show that (λ + 1)n (ΞL(1) + ΞR(1)) is a
C−n1 +C−n2 ≤ 2 min(C1, C2)−n ≤ C−n-relative approximation to Z(G,λ) for another constant
C > 1 and all n > N ≥ max(N1, N2) where N is another sufficiently large constant. If n ≤ N
or ε ≤ 2C−n, we use the brute-force algorithm to compute Z(G,λ). If ε > 2C−n, we apply
the FPTAS in Lemma 17 with approximation parameter ε′ = ε− C−n to obtain outputs ẐL
and ẐR which approximate ΞL(1) and ΞR(1) , respectively. Let Ẑ = (λ+ 1)n(ẐL + ẐR) be
the output. It is clear that exp(−ε)Ẑ ≤ Z(G,λ) ≤ exp(ε)Ẑ.

APPROX/RANDOM 2019
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Algorithm 1 Counting independent sets at fugacity λ ≥ 1 for ∆ ≥ 53.

1: Input: A graph G = (L,R, E) ∈ G∆
α,β with n vertices on both sides and ε > 0

2: Output: Ẑ such that exp(−ε)Ẑ ≤ Z(G,λ) ≤ exp(ε)Ẑ
3: if n ≤ N or ε ≤ 2C−n then
4: Use the brute-force algorithm to compute Ẑ ← Z(G,λ);
5: Exit;
6: end if
7: ε′ ← ε− C−n;
8: Use the FPTAS in Lemma 17 to obtain ẐL, an ε′-relative approximation to the partition

function Ξ(z) at z = 1 of the polymer model (Γ∗L(G), w).
9: Use the FPTAS in Lemma 17 to obtain ẐR, an ε′-relative approximation to the partition

function Ξ(z) at z = 1 of the polymer model (Γ∗R(G), w).
10: Ẑ ← (λ+ 1)n

(
ẐL + ẐR

)
;

Then we show that Algorithm 1 is indeed an FPTAS. It is required that the running
time of our algorithm is bounded by (n/ε)C3 for some constant C3 and for all n > N3 where
N3 is a constant. Let N3 = N . If ε ≤ 2C−n, the running time of the algorithm would be
2.1n ≤ (nCn/2)C3 ≤ (n/ε)C3 for sufficient large C3. If ε > 2C−n, the running time of the
algorithm would be (n/ε′)C4 = (n/(ε− C−n))C4 ≤ (2n/ε)C4 ≤ (n/ε)C3 for sufficient large
C3, where C4 is a constant from the FPTAS in Lemma 17. J
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