5,561 research outputs found

    Counting coloured planar maps: differential equations

    Full text link
    We address the enumeration of q-coloured planar maps counted bythe number of edges and the number of monochromatic edges. We prove that the associated generating function is differentially algebraic,that is, satisfies a non-trivial polynomial differential equation withrespect to the edge variable. We give explicitly a differential systemthat characterizes this series. We then prove a similar result for planar triangulations, thus generalizing a result of Tutte dealing with their proper q-colourings. Instatistical physics terms, we solvethe q-state Potts model on random planar lattices. This work follows a first paper by the same authors, where the generating functionwas proved to be algebraic for certain values of q,including q=1, 2 and 3. It isknown to be transcendental in general. In contrast, our differential system holds for an indeterminate q.For certain special cases of combinatorial interest (four colours; properq-colourings; maps equipped with a spanning forest), we derive from this system, in the case of triangulations, an explicit differential equation of order 2 defining the generating function. For general planar maps, we also obtain a differential equation of order 3 for the four-colour case and for the self-dual Potts model.Comment: 43 p

    Knot theory and matrix integrals

    Full text link
    The large size limit of matrix integrals with quartic potential may be used to count alternating links and tangles. The removal of redundancies amounts to renormalizations of the potential. This extends into two directions: higher genus and the counting of "virtual" links and tangles; and the counting of "coloured" alternating links and tangles. We discuss the asymptotic behavior of the number of tangles as the number of crossings goes to infinity.Comment: chapter of the book Random Matrix Theory, Eds Akemann, Baik and Di Francesc

    Simple recurrence formulas to count maps on orientable surfaces

    Full text link
    We establish a simple recurrence formula for the number QgnQ_g^n of rooted orientable maps counted by edges and genus. We also give a weighted variant for the generating polynomial Qgn(x)Q_g^n(x) where xx is a parameter taking the number of faces of the map into account, or equivalently a simple recurrence formula for the refined numbers Mgi,jM_g^{i,j} that count maps by genus, vertices, and faces. These formulas give by far the fastest known way of computing these numbers, or the fixed-genus generating functions, especially for large gg. In the very particular case of one-face maps, we recover the Harer-Zagier recurrence formula. Our main formula is a consequence of the KP equation for the generating function of bipartite maps, coupled with a Tutte equation, and it was apparently unnoticed before. It is similar in look to the one discovered by Goulden and Jackson for triangulations, and indeed our method to go from the KP equation to the recurrence formula can be seen as a combinatorial simplification of Goulden and Jackson's approach (together with one additional combinatorial trick). All these formulas have a very combinatorial flavour, but finding a bijective interpretation is currently unsolved.Comment: Version 3: We changed the title once again. We also corrected some misprints, gave another equivalent formulation of the main result in terms of vertices and faces (Thm. 5), and added complements on bivariate generating functions. Version 2: We extended the main result to include the ability to track the number of faces. The title of the paper has been changed accordingl

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with nn vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγnc\gamma^n, where c>0c>0 and γ∼1.14196\gamma \sim 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.Comment: 19 pages, 4 figure

    Three-dimensional maps and subgroup growth

    Full text link
    In this paper we derive a generating series for the number of cellular complexes known as pavings or three-dimensional maps, on nn darts, thus solving an analogue of Tutte's problem in dimension three. The generating series we derive also counts free subgroups of index nn in Δ+=Z2∗Z2∗Z2\Delta^+ = \mathbb{Z}_2*\mathbb{Z}_2*\mathbb{Z}_2 via a simple bijection between pavings and finite index subgroups which can be deduced from the action of Δ+\Delta^+ on the cosets of a given subgroup. We then show that this generating series is non-holonomic. Furthermore, we provide and study the generating series for isomorphism classes of pavings, which correspond to conjugacy classes of free subgroups of finite index in Δ+\Delta^+. Computational experiments performed with software designed by the authors provide some statistics about the topology and combinatorics of pavings on n≤16n\leq 16 darts.Comment: 17 pages, 6 figures, 1 table; computational experiments added; a new set of author

    Enumeration of Hypermaps of a Given Genus

    Full text link
    This paper addresses the enumeration of rooted and unrooted hypermaps of a given genus. For rooted hypermaps the enumeration method consists of considering the more general family of multirooted hypermaps, in which darts other than the root dart are distinguished. We give functional equations for the generating series counting multirooted hypermaps of a given genus by number of darts, vertices, edges, faces and the degrees of the vertices containing the distinguished darts. We solve these equations to get parametric expressions of the generating functions of rooted hypermaps of low genus. We also count unrooted hypermaps of given genus by number of darts, vertices, hyperedges and faces.Comment: 42 page

    Generating spherical multiquadrangulations by restricted vertex splittings and the reducibility of equilibrium classes

    Get PDF
    A quadrangulation is a graph embedded on the sphere such that each face is bounded by a walk of length 4, parallel edges allowed. All quadrangulations can be generated by a sequence of graph operations called vertex splitting, starting from the path P_2 of length 2. We define the degree D of a splitting S and consider restricted splittings S_{i,j} with i <= D <= j. It is known that S_{2,3} generate all simple quadrangulations. Here we investigate the cases S_{1,2}, S_{1,3}, S_{1,1}, S_{2,2}, S_{3,3}. First we show that the splittings S_{1,2} are exactly the monotone ones in the sense that the resulting graph contains the original as a subgraph. Then we show that they define a set of nontrivial ancestors beyond P_2 and each quadrangulation has a unique ancestor. Our results have a direct geometric interpretation in the context of mechanical equilibria of convex bodies. The topology of the equilibria corresponds to a 2-coloured quadrangulation with independent set sizes s, u. The numbers s, u identify the primary equilibrium class associated with the body by V\'arkonyi and Domokos. We show that both S_{1,1} and S_{2,2} generate all primary classes from a finite set of ancestors which is closely related to their geometric results. If, beyond s and u, the full topology of the quadrangulation is considered, we arrive at the more refined secondary equilibrium classes. As Domokos, L\'angi and Szab\'o showed recently, one can create the geometric counterparts of unrestricted splittings to generate all secondary classes. Our results show that S_{1,2} can only generate a limited range of secondary classes from the same ancestor. The geometric interpretation of the additional ancestors defined by monotone splittings shows that minimal polyhedra play a key role in this process. We also present computational results on the number of secondary classes and multiquadrangulations.Comment: 21 pages, 11 figures and 3 table
    • …
    corecore