8,200 research outputs found

    The algebra of cell-zeta values

    Full text link
    In this paper, we introduce cell-forms on M0,n\mathcal{M}_{0,n}, which are top-dimensional differential forms diverging along the boundary of exactly one cell (connected component) of the real moduli space M0,n(R)\mathcal{M}_{0,n}(\mathbb{R}). We show that the cell-forms generate the top-dimensional cohomology group of M0,n\mathcal{M}_{0,n}, so that there is a natural duality between cells and cell-forms. In the heart of the paper, we determine an explicit basis for the subspace of differential forms which converge along a given cell XX. The elements of this basis are called insertion forms, their integrals over XX are real numbers, called cell-zeta values, which generate a Q\mathbb{Q}-algebra called the cell-zeta algebra. By a result of F. Brown, the cell-zeta algebra is equal to the algebra of multizeta values. The cell-zeta values satisfy a family of simple quadratic relations coming from the geometry of moduli spaces, which leads to a natural definition of a formal version of the cell-zeta algebra, conjecturally isomorphic to the formal multizeta algebra defined by the much-studied double shuffle relations

    Universal Lyndon Words

    Full text link
    A word ww over an alphabet ÎŁ\Sigma is a Lyndon word if there exists an order defined on ÎŁ\Sigma for which ww is lexicographically smaller than all of its conjugates (other than itself). We introduce and study \emph{universal Lyndon words}, which are words over an nn-letter alphabet that have length n!n! and such that all the conjugates are Lyndon words. We show that universal Lyndon words exist for every nn and exhibit combinatorial and structural properties of these words. We then define particular prefix codes, which we call Hamiltonian lex-codes, and show that every Hamiltonian lex-code is in bijection with the set of the shortest unrepeated prefixes of the conjugates of a universal Lyndon word. This allows us to give an algorithm for constructing all the universal Lyndon words.Comment: To appear in the proceedings of MFCS 201

    Abelian Primitive Words

    Full text link
    We investigate Abelian primitive words, which are words that are not Abelian powers. We show that unlike classical primitive words, the set of Abelian primitive words is not context-free. We can determine whether a word is Abelian primitive in linear time. Also different from classical primitive words, we find that a word may have more than one Abelian root. We also consider enumeration problems and the relation to the theory of codes

    Algebraic Relations Between Harmonic Sums and Associated Quantities

    Full text link
    We derive the algebraic relations of alternating and non-alternating finite harmonic sums up to the sums of depth~6. All relations for the sums up to weight~6 are given in explicit form. These relations depend on the structure of the index sets of the harmonic sums only, but not on their value. They are therefore valid for all other mathematical objects which obey the same multiplication relation or can be obtained as a special case thereof, as the harmonic polylogarithms. We verify that the number of independent elements for a given index set can be determined by counting the Lyndon words which are associated to this set. The algebraic relations between the finite harmonic sums can be used to reduce the high complexity of the expressions for the Mellin moments of the Wilson coefficients and splitting functions significantly for massless field theories as QED and QCD up to three loop and higher orders in the coupling constant and are also of importance for processes depending on more scales. The ratio of the number of independent sums thus obtained to the number of all sums for a given index set is found to be ≤1/d\leq 1/d with dd the depth of the sum independently of the weight. The corresponding counting relations are given in analytic form for all classes of harmonic sums to arbitrary depth and are tabulated up to depth d=10d=10.Comment: 39 pages LATEX, 1 style fil

    BPS counting for knots and combinatorics on words

    Get PDF
    We discuss relations between quantum BPS invariants defined in terms of a product decomposition of certain series, and difference equations (quantum A-polynomials) that annihilate such series. We construct combinatorial models whose structure is encoded in the form of such difference equations, and whose generating functions (Hilbert-Poincar\'e series) are solutions to those equations and reproduce generating series that encode BPS invariants. Furthermore, BPS invariants in question are expressed in terms of Lyndon words in an appropriate language, thereby relating counting of BPS states to the branch of mathematics referred to as combinatorics on words. We illustrate these results in the framework of colored extremal knot polynomials: among others we determine dual quantum extremal A-polynomials for various knots, present associated combinatorial models, find corresponding BPS invariants (extremal Labastida-Mari\~no-Ooguri-Vafa invariants) and discuss their integrality.Comment: 41 pages, 1 figure, a supplementary Mathematica file attache
    • …
    corecore