9,365 research outputs found

    Lattice path counting and the theory of queues

    Get PDF
    In this paper we will show how recent advances in the combinatorics of lattice paths can be applied to solve interesting and nontrivial problems in the theory of queues. The problems we discuss range from classical ones like M^a/M^b/1 systems to open tandem systems with and without global blocking and to queueing models that are related to random walks in a quarter plane like the Flatto-Hahn model or systems with preemptive priorities. (author´s abstract)Series: Research Report Series / Department of Statistics and Mathematic

    The number of lattice paths below a cyclically shifting boundary

    Get PDF
    We count the number of lattice paths lying under a cyclically shifting piecewise linear boundary of varying slope. Our main result can be viewed as an extension of well-known enumerative formulae concerning lattice paths dominated by lines of integer slope (e.g. the generalized ballot theorem). Its proof is bijective, involving a classical “reflection” argument. Moreover, a straightforward refinement of our bijection allows for the counting of paths with a specified number of corners. We also show how the result can be applied to give elegant derivations for the number of lattice walks under certain periodic boundaries. In particular, we recover known expressions concerning paths dominated by a line of half-integer slope, and some new and old formulae for paths lying under special “staircases.

    Complexity of Two-Dimensional Patterns

    Full text link
    In dynamical systems such as cellular automata and iterated maps, it is often useful to look at a language or set of symbol sequences produced by the system. There are well-established classification schemes, such as the Chomsky hierarchy, with which we can measure the complexity of these sets of sequences, and thus the complexity of the systems which produce them. In this paper, we look at the first few levels of a hierarchy of complexity for two-or-more-dimensional patterns. We show that several definitions of ``regular language'' or ``local rule'' that are equivalent in d=1 lead to distinct classes in d >= 2. We explore the closure properties and computational complexity of these classes, including undecidability and L-, NL- and NP-completeness results. We apply these classes to cellular automata, in particular to their sets of fixed and periodic points, finite-time images, and limit sets. We show that it is undecidable whether a CA in d >= 2 has a periodic point of a given period, and that certain ``local lattice languages'' are not finite-time images or limit sets of any CA. We also show that the entropy of a d-dimensional CA's finite-time image cannot decrease faster than t^{-d} unless it maps every initial condition to a single homogeneous state.Comment: To appear in J. Stat. Phy

    Counting Arithmetical Structures on Paths and Cycles

    Full text link
    Let G be a finite, connected graph. An arithmetical structure on G is a pair of positive integer vectors d, r such that (diag (d) - A) r=0 , where A is the adjacency matrix of G. We investigate the combinatorics of arithmetical structures on path and cycle graphs, as well as the associated critical groups (the torsion part of the cokernels of the matrices (diag (d) - A)). For paths, we prove that arithmetical structures are enumerated by the Catalan numbers, and we obtain refined enumeration results related to ballot sequences. For cycles, we prove that arithmetical structures are enumerated by the binomial coefficients ((2n-1)/(n-1)) , and we obtain refined enumeration results related to multisets. In addition, we determine the critical groups for all arithmetical structures on paths and cycles

    Probabilistic Computability and Choice

    Get PDF
    We study the computational power of randomized computations on infinite objects, such as real numbers. In particular, we introduce the concept of a Las Vegas computable multi-valued function, which is a function that can be computed on a probabilistic Turing machine that receives a random binary sequence as auxiliary input. The machine can take advantage of this random sequence, but it always has to produce a correct result or to stop the computation after finite time if the random advice is not successful. With positive probability the random advice has to be successful. We characterize the class of Las Vegas computable functions in the Weihrauch lattice with the help of probabilistic choice principles and Weak Weak K\H{o}nig's Lemma. Among other things we prove an Independent Choice Theorem that implies that Las Vegas computable functions are closed under composition. In a case study we show that Nash equilibria are Las Vegas computable, while zeros of continuous functions with sign changes cannot be computed on Las Vegas machines. However, we show that the latter problem admits randomized algorithms with weaker failure recognition mechanisms. The last mentioned results can be interpreted such that the Intermediate Value Theorem is reducible to the jump of Weak Weak K\H{o}nig's Lemma, but not to Weak Weak K\H{o}nig's Lemma itself. These examples also demonstrate that Las Vegas computable functions form a proper superclass of the class of computable functions and a proper subclass of the class of non-deterministically computable functions. We also study the impact of specific lower bounds on the success probabilities, which leads to a strict hierarchy of classes. In particular, the classical technique of probability amplification fails for computations on infinite objects. We also investigate the dependency on the underlying probability space.Comment: Information and Computation (accepted for publication

    Quantum cohomology via vicious and osculating walkers

    Get PDF
    We relate the counting of rational curves intersecting Schubert varieties of the Grassmannian to the counting of certain non-intersecting lattice paths on the cylinder, so-called vicious and osculating walkers. These lattice paths form exactly solvable statistical mechanics models and are obtained from solutions to the Yang–Baxter equation. The eigenvectors of the transfer matrices of these models yield the idempotents of the Verlinde algebra of the gauged u^(n)k -WZNW model. The latter is known to be closely related to the small quantum cohomology ring of the Grassmannian. We establish further that the partition functions of the vicious and osculating walker model are given in terms of Postnikov’s toric Schur functions and can be interpreted as generating functions for Gromov–Witten invariants. We reveal an underlying quantum group structure in terms of Yang–Baxter algebras and use it to give a generating formula for toric Schur functions in terms of divided difference operators which appear in known representations of the nil-Hecke algebra

    Counting Arithmetical Structures on Paths and Cycles

    Get PDF
    Let G be a finite, connected graph. An arithmetical structure on G is a pair of positive integer vectors d, r such that (diag (d) - A) r=0 , where A is the adjacency matrix of G. We investigate the combinatorics of arithmetical structures on path and cycle graphs, as well as the associated critical groups (the torsion part of the cokernels of the matrices (diag (d) - A)). For paths, we prove that arithmetical structures are enumerated by the Catalan numbers, and we obtain refined enumeration results related to ballot sequences. For cycles, we prove that arithmetical structures are enumerated by the binomial coefficients ((2n-1)/(n-1)) , and we obtain refined enumeration results related to multisets. In addition, we determine the critical groups for all arithmetical structures on paths and cycles
    • …
    corecore