292 research outputs found

    Counting decomposable univariate polynomials

    Full text link
    A univariate polynomial f over a field is decomposable if it is the composition f = g(h) of two polynomials g and h whose degree is at least 2. We determine the dimension (over an algebraically closed field) of the set of decomposables, and an approximation to their number over a finite field. The tame case, where the field characteristic p does not divide the degree n of f, is reasonably well understood, and we obtain exponentially decreasing error bounds. The wild case, where p divides n, is more challenging and our error bounds are weaker

    Survey on counting special types of polynomials

    Full text link
    Most integers are composite and most univariate polynomials over a finite field are reducible. The Prime Number Theorem and a classical result of Gau{\ss} count the remaining ones, approximately and exactly. For polynomials in two or more variables, the situation changes dramatically. Most multivariate polynomials are irreducible. This survey presents counting results for some special classes of multivariate polynomials over a finite field, namely the the reducible ones, the s-powerful ones (divisible by the s-th power of a nonconstant polynomial), the relatively irreducible ones (irreducible but reducible over an extension field), the decomposable ones, and also for reducible space curves. These come as exact formulas and as approximations with relative errors that essentially decrease exponentially in the input size. Furthermore, a univariate polynomial f is decomposable if f = g o h for some nonlinear polynomials g and h. It is intuitively clear that the decomposable polynomials form a small minority among all polynomials. The tame case, where the characteristic p of Fq does not divide n = deg f, is fairly well-understood, and we obtain closely matching upper and lower bounds on the number of decomposable polynomials. In the wild case, where p does divide n, the bounds are less satisfactory, in particular when p is the smallest prime divisor of n and divides n exactly twice. The crux of the matter is to count the number of collisions, where essentially different (g, h) yield the same f. We present a classification of all collisions at degree n = p^2 which yields an exact count of those decomposable polynomials.Comment: to appear in Jaime Gutierrez, Josef Schicho & Martin Weimann (editors), Computer Algebra and Polynomials, Lecture Notes in Computer Scienc

    Counting classes of special polynomials

    Get PDF
    Most integers are composite and most univariate polynomials over a finite field are reducible. The Prime Number Theorem and a classical result of Gauß count the remaining ones, approximately and exactly. In two or more variables, the situation changes dramatically. Most multivariate polynomials are irreducible. We present counting results for some special classes of multivariate polynomials over a finite field, namely the reducible ones, the s-powerful ones (divisible by the s-th power of a nonconstant polynomial), and the relatively irreducible ones (irreducible but reducible over an extension field). These numbers come as exact formulas and as approximations with relative errors that essentially decrease exponentially in the input size. Furthermore, a univariate polynomial f over a field F is decomposable if f = g o h with nonlinear polynomials g and h. It is intuitively clear that the decomposable polynomials form a small minority among all polynomials. The tame case, where the characteristic p of F does not divide n = deg f, is fairly well understood, and the upper and lower bounds on the number of decomposable polynomials of degree n match asymptotically. In the wild case, where p does divide n, the bounds are less satisfactory, in particular when p is the smallest prime divisor of n and divides n exactly twice. There is an obvious inclusion-exclusion formula for counting. The main issue is then to determine, under a suitable normalization, the number of collisions, where essentially different components (g, h) yield the same f. In the tame case, Ritt's Second Theorem classifies all collisions of two such pairs. We provide a normal form for collisions of any number of compositions with any number of components. This generalization yields an exact formula for the number of decomposable polynomials of degree n coprime to p. For the wild case, we classify all collisions at degree n = p^2 and obtain the exact number of decomposable polynomials of degree p^2

    Tame Decompositions and Collisions

    Full text link
    A univariate polynomial f over a field is decomposable if f = g o h = g(h) for nonlinear polynomials g and h. It is intuitively clear that the decomposable polynomials form a small minority among all polynomials over a finite field. The tame case, where the characteristic p of Fq does not divide n = deg f, is fairly well-understood, and we have reasonable bounds on the number of decomposables of degree n. Nevertheless, no exact formula is known if nn has more than two prime factors. In order to count the decomposables, one wants to know, under a suitable normalization, the number of collisions, where essentially different (g, h) yield the same f. In the tame case, Ritt's Second Theorem classifies all 2-collisions. We introduce a normal form for multi-collisions of decompositions of arbitrary length with exact description of the (non)uniqueness of the parameters. We obtain an efficiently computable formula for the exact number of such collisions at degree n over a finite field of characteristic coprime to p. This leads to an algorithm for the exact number of decomposable polynomials at degree n over a finite field Fq in the tame case

    S-parts of values of univariate polynomials, binary forms and decomposable forms at integral points

    Full text link
    Let SS be a finite set of primes. The SS-part [m]S[m]_S of a non-zero integer mm is the largest positive divisor of mm that is composed of primes from SS. In 2013, Gross and Vincent proved that if f(X)f(X) is a polynomial with integer coefficients and with at least two roots in the complex numbers, then for every integer xx at which f(x)f(x) is non-zero, we have (*) [f(x)]S≤c⋅∣f(x)∣d[f(x)]_S\leq c\cdot |f(x)|^d, where cc and dd are effectively computable and d<1d<1. Their proof uses Baker-type estimates for linear forms in complex logarithms of algebraic numbers. As an easy application of the pp-adic Thue-Siegel-Roth theorem we show that if f(X)f(X) has degree n≥2n\geq 2 and no multiple roots, then an inequality such as (*) holds for all d>1/nd>1/n, provided we do not require effectivity of cc. Further, we show that such an inequality does not hold anymore with d=1/nd=1/n and sufficiently small cc. In addition we prove a density result, giving for every ϵ>0\epsilon>0 an asymptotic estimate with the right order of magnitude for the number of integers xx with absolute value at most BB such that f(x)f(x) has SS-part at least ∣f(x)∣ϵ|f(x)|^{\epsilon}. The result of Gross and Vincent, as well as the other results mentioned above, are generalized to values of binary forms and decomposable forms at integral points. Our main tools are Baker type estimates for linear forms in complex and pp-adic logarithms, the pp-adic Subspace Theorem of Schmidt and Schlickewei, and a recent general lattice point counting result of Barroero and Widmer.Comment: 42 page
    • …
    corecore