17 research outputs found

    Creation and Growth of Components in a Random Hypergraph Process

    Full text link
    Denote by an ℓ\ell-component a connected bb-uniform hypergraph with kk edges and k(b−1)−ℓk(b-1) - \ell vertices. We prove that the expected number of creations of ℓ\ell-component during a random hypergraph process tends to 1 as ℓ\ell and bb tend to ∞\infty with the total number of vertices nn such that ℓ=o(nb3)\ell = o(\sqrt[3]{\frac{n}{b}}). Under the same conditions, we also show that the expected number of vertices that ever belong to an ℓ\ell-component is approximately 121/3(b−1)1/3ℓ1/3n2/312^{1/3} (b-1)^{1/3} \ell^{1/3} n^{2/3}. As an immediate consequence, it follows that with high probability the largest ℓ\ell-component during the process is of size O((b−1)1/3ℓ1/3n2/3)O((b-1)^{1/3} \ell^{1/3} n^{2/3}). Our results give insight about the size of giant components inside the phase transition of random hypergraphs.Comment: R\'{e}sum\'{e} \'{e}tend

    Asymptotic normality of the size of the giant component in a random hypergraph

    Full text link
    Recently, we adapted random walk arguments based on work of Nachmias and Peres, Martin-L\"of, Karp and Aldous to give a simple proof of the asymptotic normality of the size of the giant component in the random graph G(n,p)G(n,p) above the phase transition. Here we show that the same method applies to the analogous model of random kk-uniform hypergraphs, establishing asymptotic normality throughout the (sparse) supercritical regime. Previously, asymptotic normality was known only towards the two ends of this regime.Comment: 11 page

    Counting Connected Graphs Asymptotically

    Get PDF
    We find the asymptotic number of connected graphs with kk vertices and k−1+lk-1+l edges when k,lk,l approach infinity, reproving a result of Bender, Canfield and McKay. We use the {\em probabilistic method}, analyzing breadth-first search on the random graph G(k,p)G(k,p) for an appropriate edge probability pp. Central is analysis of a random walk with fixed beginning and end which is tilted to the left.Comment: 23 page

    Linear Programming Relaxations for Goldreich's Generators over Non-Binary Alphabets

    Full text link
    Goldreich suggested candidates of one-way functions and pseudorandom generators included in NC0\mathsf{NC}^0. It is known that randomly generated Goldreich's generator using (r−1)(r-1)-wise independent predicates with nn input variables and m=Cnr/2m=C n^{r/2} output variables is not pseudorandom generator with high probability for sufficiently large constant CC. Most of the previous works assume that the alphabet is binary and use techniques available only for the binary alphabet. In this paper, we deal with non-binary generalization of Goldreich's generator and derives the tight threshold for linear programming relaxation attack using local marginal polytope for randomly generated Goldreich's generators. We assume that u(n)∈ω(1)∩o(n)u(n)\in \omega(1)\cap o(n) input variables are known. In that case, we show that when r≥3r\ge 3, there is an exact threshold μc(k,r):=(kr)−1(r−2)r−2r(r−1)r−1\mu_\mathrm{c}(k,r):=\binom{k}{r}^{-1}\frac{(r-2)^{r-2}}{r(r-1)^{r-1}} such that for m=μnr−1u(n)r−2m=\mu\frac{n^{r-1}}{u(n)^{r-2}}, the LP relaxation can determine linearly many input variables of Goldreich's generator if μ>μc(k,r)\mu>\mu_\mathrm{c}(k,r), and that the LP relaxation cannot determine 1r−2u(n)\frac1{r-2} u(n) input variables of Goldreich's generator if μ<μc(k,r)\mu<\mu_\mathrm{c}(k,r). This paper uses characterization of LP solutions by combinatorial structures called stopping sets on a bipartite graph, which is related to a simple algorithm called peeling algorithm.Comment: 14 pages, 1 figur
    corecore