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Abstract

We find the asymptotic number of connected graphs with k vertices and k − 1 + l edges when k, l
approach infinity, re-proving a result of Bender, Canfield and McKay. We use the probabilistic method,
analyzing breadth-first search on the random graph G(k, p) for an appropriate edge probability p. Central
is the analysis of a random walk with fixed beginning and end which is tilted to the left.
c© 2006 Elsevier Ltd. All rights reserved.

1. The main results

In this paper, we investigate the number of graphs with a given complexity. Here, the
complexity of a graph is its number of edges minus its number of vertices plus one. For k, l ≥ 0,
we write C(k, l) for the number of labeled connected graphs with k vertices and complexity l.

The study of C(k, l) has a long history. Cayley’s Theorem gives the exact formula for the
number of trees, C(k, 0) = kk−2. The asymptotic formula for the number of unicyclic graphs,
C(k, 1), has been given by Rényi [10] and others. Wright [12] gave the asymptotics of C(k, l)
for l arbitrary but fixed and k → ∞, and also studied the asymptotic behavior of C(k, l) when
l = o(k1/3) in [13].

The asymptotics of C(k, l) for all k, l → ∞ were found by Bender et al. [3]. The proof
in [3] is based on an explicit recursive formula for C(k, l). In this paper, we give an alternate,
and substantially different, derivation of the Bender, Canfield, McKay results. Our argument
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is Erdős Magic, using the study of the random graph G(k, p) to find the asymptotics of the
strictly enumerative C(k, l). The critical idea, given in Theorem 1.1 below, involves an analysis
of a breadth-first search algorithm on G(k, p). Similar methods, with somewhat weaker results
in our cases, were employed recently by Coja-Oghlan et al. [4]. We can also use the results
and methodology in this paper to find local statistics on the joint distribution of the size and
complexity of the dominant component of G(n, p) in the supercritical regime, which we defer
to a future publication [6]. Further, while computational issues are not addressed in our current
work, these methods may be used to efficiently generate a random connected graph of given size
and complexity [1]. The idea of using the random graph to study C(k, l) has appeared previously.
In [8], a reformulation in terms of random graphs was used to prove upper and lower bounds
on C(k, l), extending the upper bound in [2]. The idea in [8] is that the expected value of the
number of connected components with k vertices and complexity l can be explicitly written in
terms of C(k, l). Bounds on the random number of such components then imply bounds on
C(k, l). In [11], a more sophisticated analysis was performed, where the connected component
of a given node in the random graph was explored using breadth-first search. This analysis
allows us to rewrite the asymptotics of C(k, l) for l fixed in terms of Brownian excursions.
Interestingly, this identifies the Wright constants cl for the asymptotics C(k, l) ∼ clkk−2k3l/2 in
terms of moments of the mean distance from the origin of a Brownian excursion. These moments
were also investigated in [7], but the connection to the Wright constants had not been made
before.

Quite recently, Pittel and Wormald [9] had yet another approach to the enumeration of
connected graphs. They found asymptotics for the 2-core with a given number of vertices and
edges and were then able to give the asymptotics of C(k, l) for all k, l → ∞. The plethora of
methodologies employed is, to our minds, a reflection of the fundamental nature and depth of
this problem.

In this paper, we will use the breadth-first search representation of connected components in
G(k, p) for C(k, l), choose p appropriately, and analyze the resulting problem using probabilistic
means. The critical identity is Theorem 1.1, which rewrites the C(k, l) in terms of a k-step
conditioned random walk with steps that are Poisson random variables minus one, and where
the parameter of the Poisson steps varies with time. The main work in this paper then lies in the
study of this random walk.

We note that when l ≥ k ln k (and even somewhat less) the asymptotics of C(k, l) are
trivial as asymptotically almost all graphs on k vertices and k − 1 + l edges will be connected.
Thus, while our methods extend further, we shall restrict ourselves to finding the asymptotics of
C(k, l) with l ≤ k ln k and l → ∞. It will be convenient to subdivide the possible l into three
regimes:

1. Very Large: l � k and l ≤ k ln k;
2. Large: l = Θ(k);

3. Small: l 	 k and l → ∞.

The main ideas of this paper are given in Section 1, where we state the main results
Theorems 1.2 and 1.5. The consequences of our main results for C(k, l) are formulated in
Section 2. The proofs of Theorems 1.2 and 1.5 are given in Section 3.

We employ the following fairly standard probability notation. BIN[n, p] denotes the Binomial
Distribution with parameter n and probability of success p. Po(λ) denotes the Poisson
Distribution with mean λ. I [A] denotes the indicator random variable of an event A.
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1.1. Tilted balls into bins

Let k ≥ 2 be an integer. In this section, we define a process of placing k − 1 balls into k
bins with a tilted distribution, which makes it more likely that balls are placed in the left bins. In
Section 1.2 below, we will find an identity between this bin process and C(k, l).

Let p ∈ (0, 1]. We have k − 1 balls 1 ≤ j ≤ k − 1 and k bins 1 ≤ i ≤ k. We place the j th
ball into bin Tj , where Tj is a random variable with distribution given by

Pr[Tj = i ] = p(1 − p)i−1

1 − (1 − p)k
. (1.1)

This is a truncated geometric distribution. Note that the larger p is the more the Tj are tilted to the
left. We shall call p the tilt of the distribution. The Tj are independent and identically distributed.
Let Zi , 1 ≤ i ≤ k, denote the number of balls in the i th bin. Set Y0 = 1 and Yi = Yi−1 + Zi − 1
for 1 ≤ i ≤ k. Note that Yk = 0 as there are precisely k − 1 balls. Let TREE be the event that

Yt > 0 for 1 ≤ t ≤ k − 1, Yk = 0, (1.2)

or, alternatively,

Z1 + · · · + Zt ≥ t for 1 ≤ t ≤ k − 1, Z1 + · · · + Zk = k − 1. (1.3)

(Note that Yk = 0 and Z1 + · · · + Zk = k − 1 hold trivially when we place k − 1 balls. In a
later stage, we will also consider Poisson placement of balls, which explains why we add these
restrictions in the event TREE.) We note that we use the term TREE because there is a natural
bijection between placements of k − 1 balls into k bins satisfying TREE and trees on k vertices.
Alternatively, one may consider Y0, Y1, . . . , Yk , with Y0 = 1, Yk = 0, as a walk with fixed
endpoints, or a bridge. The condition TREE can then be interpreted as saying that the bridge
is an excursion. In certain limiting situations the bridge approaches a biased Brownian bridge,
where the bias depends on the parameter p.

Definition 1. Set

M =
(

k

2

)
−

k−1∑
j=1

Tj (1.4)

in the probability space in which the Tj are independent with distribution given by (1.1). Set M∗
equal to the same random variable but in the above probability space conditioned on the event
TREE.

We can give an alternative definition of M as follows:(
k

2

)
−

k−1∑
j=1

Tj =
k−1∑
i=1

(Yi − 1), (1.5)

which can be seen by noting that both sides of (1.5) increase by one when one ball is moved one
position to the left and decrease by one when one ball is moved one position to the right. Since
one can get from any placement to any other placement via a series of these moves, the two sides
of (1.5) must differ by a constant. However, when Tj = j for 1 ≤ j ≤ k − 1, we have Yi = 1 for
1 ≤ i ≤ k − 1 and Yk = 0 and so the sides are equal for this placement of balls.
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1.2. The critical identity

The main idea of our approach is given in Theorem 1.1 below. Note that this result is exact,
there are no asymptotics.

Theorem 1.1. For all k, l ∈ N, p ∈ (0, 1],

A1 A2 A3 = C(k, l)pk+l−1(1 − p)

(
k
2

)
−(k+l−1)

, (1.6)

where

A1 = (1 − (1 − p)k)k−1, (1.7)

A2 = Pr[TREE], (1.8)

A3 = Pr[BIN[M∗, p] = l]. (1.9)

Proof. The right hand side of (1.6) is the probability that G(k, p) is connected and has
complexity l. We show that the left hand side of (1.6) also gives this probability. Designate a
root vertex v and label the other vertices 1 ≤ j ≤ k − 1. We analyze breadth-first search on
G(k, p), starting with root v. (More precisely, the queue is initially {v}. In Stage 1 we pop v off
the queue and add to the queue the neighbors of v. Each successive stage we pop a vertex off the
queue and add to the queue its neighbors that have not already been in the queue. The process
stops when the queue is empty.)

Each non-root j flips a coin k times, where heads occurs with probability p. The i th flip being
heads has the following meaning. If the breadth-first search reaches the stage in which the i th
vertex is “popped” and if at that moment vertex j has not yet entered the queue, then j is adjacent
to the popped vertex. (On an intuitive level breadth-first search is often viewed as vertices already
“in” searching for new neighbors. Here, however, we view the vertices that are “out” as trying
to get in! As the graph is undirected the two approaches yield the same result, but this change in
viewpoint is absolutely central to our analysis.) To get all vertices, it is necessary that each j has
at least one head. This happens with probability A1. Conditioning on that, we let Tj be that first
i when j had a head. So Tj has the truncated geometric distribution of (1.1). While the process
continues Yt is the size of the queue. The condition that the process does not terminate before
stage k is precisely that no Yt = 0 for 1 ≤ t ≤ k − 1, which is TREE, so this gives A2. Now
the only {w1, w2} whose adjacency has not been determined are those for which (letting w1 be
the first one popped) w2 was in the queue when w1 was popped. There are precisely

∑k−1
t=0 (Yt −1)

of such pairs, i.e., we add the size of the queue minus the popped vertex over each stage, except
for the last stage. Since we are conditioning on TREE, the random variable

∑k−1
t=0 (Yt − 1) has

distribution M∗. We now look at those pairs, each is adjacent with independent probability p and
to have complexity l, we need to have exactly l such pairs adjacent, so that the probability of this
event equals A3. �

Our approach to finding the asymptotics of C(k, l) will be to find the asymptotics of A2, A3.
This we shall be able to do when, critically, p has the appropriate value. We will let p depend on
l and k, and the choice of p is described in more detail in Section 1.3. Looking ahead, we shall
assume

k−3/2 	 p ≤ 10
ln k

k
. (1.10)

It will be convenient to subdivide the possible p into three regimes:
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1. Very Large: k−1 	 p ≤ 10 ln k
k ;

2. Large: p = Θ(k−1);
3. Small: k−3/2 	 p 	 k−1.

In each of these cases, we will write p = c
k , where c = c(k) → 0 when p is small, and

c = c(k) → ∞ when p is very large.
The remainder of this paper is organized as follows. In Section 1.3, we define how to choose

p appropriately, and we show that the above three regimes for p correspond to the three regimes
of l given earlier. In Section 1.4, we investigate two walk problems, and relate the probability of
TREE to the probability that these two walks do not revisit their starting point 0. In Section 1.5,
we show that both M , and, more importantly, M∗ obey a central limit theorem. In Section 2, we
state the consequences of our results concerning Pr[TREE] and the asymptotic normality of M∗
for C(k, l) in the three cases above. In Section 3, we prove our main results.

1.3. The choice of tilt

Let μ, σ 2 denote the mean and variance of M . Both of these have closed forms as a function
of p. We have the exact calculation

μ = (k − 1)

[
k

2
− E[T1]

]
= (k − 1)

[
k

2
− 1 − (k + 1)p(1 − p)k − (1 − p)k+1

p(1 − (1 − p)k)

]
.

(1.11)

We choose p to satisfy the equation

pμ = l. (1.12)

We can show from Calculus that μ = μ(p) is an increasing function of p and so (1.12) will
have a unique solution. The asymptotics depends on the regime. Writing p = c

k , we have for p
satisfying (1.10),

pμ ∼ f1(c)k and σ 2 ∼ f2(c)k
3, (1.13)

with

f1(c) = c

[
1

2
− 1 − (c + 1)e−c

c(1 − e−c)

]
, (1.14)

and, setting κ = c(1 − e−c)−1,

f2(c) = κ
[
e−c[−c−1 − 2c−2 − 2c−3] + 2c−3

]
−
(
κ[e−c(−c−1 − c−2) + c−2]

)2
.

(1.15)

For the first equality in (1.13) to hold, we use that (1.10) implies that 1 − (1 − p)k ∼ 1 − e−pk =
1 − e−c. The second equality in (1.13) is similar.

In particular, for p small, and using that f1(c) = c2

12 + O(c3) and f2(c) ∼ 1
12 when c → 0,

pμ = k3 p2

12
+ O(k4 p3 + 1) and σ 2 ∼ k3

12
. (1.16)

For the error term in the first equality in (1.16), we need to use an improvement of (1.11), where,
for p small, we keep track of the precise errors.



R. van der Hofstad, J. Spencer / European Journal of Combinatorics 27 (2006) 1294–1320 1299

For p very large, on the other hand, now using that f1(c) ∼ c
2 and f2(c) ∼ c−2 when c → ∞,

as well as (1 − p)k ∼ 0, we obtain

pμ ∼ pk2

2
and σ 2 ∼ k

p2
. (1.17)

We see that the three regimes of p do indeed correspond to the three regimes of l, as we show

now. Indeed, for l small, we have that pμ ∼ k3 p2

12 = l is equivalent to

p ∼ k−3/2
√

12l. (1.18)

On the other hand, for l large, if l ∼ kβ, then

p ∼ c

k
with f1(c) = β, (1.19)

while for l very large,

p ∼ 2lk−2. (1.20)

The asymptotics in (1.13) with p ∼ c
k can be found by approximating k−1Tj by the continuous

truncated exponential distribution over [0, 1], which has density ce−cx/(1 − e−c).

1.4. Two walks

We define two basic walks. In our applications, the Zi , Z R
i below will be random variables of

various sorts and so ESC, ESCL , ESCR , ESCR
L become events.

Definition 2. Let Z1, Z2, . . . be non-negative integers. The leftwalk is defined by the initial
condition Y0 = 1 and the recursion Yi = Yi−1 + Zi − 1 for i ≥ 1. The escape event, denoted
ESC, is that Yi > 0 for all i ≥ 1. The event ESCL , or escape until time L, is that Yi > 0 for
1 ≤ i ≤ L.

It will often be convenient to count the bins “from the right”. Let Z R
i , 1 ≤ i ≤ k, denote the

number of balls in the k − i + 1st bin. Set Y R
0 = 0 and Y R

i = Y R
i−1 + 1 − Z R

i , so that Y R
i = Yk−i .

Then TREE becomes

Y R
t > 0 for 1 ≤ t ≤ k − 1, Y R

k = 0, (1.21)

or, alternatively,

Z R
1 + · · · + Z R

t ≤ t − 1 for 1 ≤ t ≤ k − 1, Z R
1 + · · · + Z R

k = k − 1. (1.22)

We shall generally use the superscript R when examining bins from the right. In particular, we
set i R = k − i , so that bin i R is the i th bin from the right.

Definition 3. Let Z R
1 , Z R

2 , . . . be non-negative integers. The rightwalk is defined by the initial
condition Y R

0 = 0 and the recursion Y R
i = Y R

i−1 + 1 − Z R
i for i ≥ 1. The escape event, denoted

ESCR , is that Y R
i > 0 for all i ≥ 1. The event ESCR

L , or escape until time L, is that Y R
i > 0 for

1 ≤ i ≤ L.
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We allow Zi , Z R
i to be defined only for 1 ≤ i ≤ L in which case Yi , Y R

i are defined for
0 ≤ i ≤ L and ESCL , ESCR

L are well defined. Indeed, our main results will be for these walks of
length L, the infinite walks will be a convenient auxiliary tool.

When k − 1 balls are placed into k bins with tilt p and Zi is the number of balls in bin i , the
event ESCL is that Yt > 0 for 1 ≤ t ≤ L. Letting Z R

i be the number of balls in bin i R , the event
ESCR

L is that Y R
t > 0 for 1 ≤ t ≤ L.

Definition 4. Given L < 1
2 k, we call bins with 1 ≤ i ≤ L the left side; bins with 1 ≤ i R ≤ L

the right side; and all other bins the middle.

Now consider the tilted balls into bins formulation of Section 1.1. Set

λ = (k − 1)
p

1 − (1 − p)k
and λR = (k − 1)

p(1 − p)k−1

1 − (1 − p)k
, (1.23)

so that λ, λR are the expected number of balls in the leftmost and rightmost bin respectively.
When p = c

k , the asymptotics of λ and λR are given by

λ ∼ c

1 − e−c and λR ∼ ce−c

1 − e−c . (1.24)

In particular, for p very large, λ → ∞ and λR ∼ 0, while for p small, λ = 1 + pk
2 (1 + o(1))

and λR = 1 − pk
2 (1 + o(1)).

Theorem 1.2. Let ESC be given by Definition 2, with all Zi ∼ Po(λ). Let ESCR be given by
Definition 3, with all Z R

i ∼ Po(λR). Let p be in the range given by (1.10). Then

Pr[TREE] ∼ Pr[ESC] Pr[ESCR]. (1.25)

We may naturally interpret Theorem 1.2 as saying that the event TREE is asymptotically
equal to the probability that the left and right sides satisfy the conditions imposed by TREE. For
i small, Yi behaves like a leftwalk with Zi being roughly Po(λ) and Y R

i behaves like a rightwalk
with Z R

i being roughly Po(λR). The proof of Theorem 1.2 is deferred to Section 3.
The left and right walks with Zi , Z R

i independent Poisson have been well studied. Let
Z ∼ Po(1 + ε). Let Zi ∼ Z for all i , and the Zi are mutually independent. Consider the
leftwalk as given by Definition 2.

Theorem 1.3. Pr[ESC] = y where y is the unique real number in (0, 1) such that e−(1+ε)y =
1 − y. Further, if y = y(ε), then y ≤ 2ε for all positive ε and y ∼ 2ε as ε → 0+.

Proof. We use that there is a bijection between random walks with i.i.d. steps with distribution
Po(λ) − 1 and Galton–Watson trees with offspring distribution Po(λ). This bijection is such that
random walks that never return to the origin are mapped to branching process configurations
where the tree is infinite. For the latter, we have that the probability is the survival probability of
the branching process. The extinction probability x satisfies

e−λ(x−1) = x . (1.26)

Therefore, for the survival probability y = 1 − x , we obtain

e−(1+ε)y = 1 − y. (1.27)

The inequality y(ε) ≤ 2ε and the asymptotics y(ε) ∼ 2ε are elementary calculus exercises. �
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Next let Z R ∼ Po(1 − ε). Let Z R
i ∼ Z R all i , independent. Consider the rightwalk as given

by Definition 3. Then we can identify the probability of ESCR exactly as follows:

Theorem 1.4. Pr[ESCR] = ε.

Proof. Consider an infinite walk starting at zero with step size 1 − P where P is Poisson
with mean 1 − ε. Here, ε ∈ (0, 1) but we do not assume ε → 0. We claim Pr[ESCR] = ε

precisely. Take an infinite random walk, 0 = Y0, Y1, Y2, . . . and let Wn be the number of i , where
0 ≤ i < n, for which St = Yi+t − Yi for t ≥ 0 never returns to zero, i.e., the number of i ,
0 ≤ i < n for which Y j > Yi for all j > i .

For each i this has probability α of occurring so that by linearity of expectation E[Wn] = nα.
Let Vn be the minimum of Y j for j ≥ n. Then, by definition Wn = max[Vn, 0]. Indeed, for each
0 ≤ j < Vn , let i = i( j) be the maximal i , 0 ≤ i < n for which Yi = j . These are precisely the
i for which the walk beginning at time i has the desired property. Thus nα = E[max[Vn, 0]]. So
far everything is exact and now it follows from the fact that the random walk has positive drift
that

lim
n→∞

E[max[Vn, 0]]
n

= ε. � (1.28)

Suppose p = c
n with c > 0 fixed. Then Pr[ESC] = y where e−λy = 1 − y by (1.27) and λ is

given by (1.23), so that Pr[ESC] ∼ 1 − e−c. Theorem 1.4 gives Pr[ESCR] = 1 − λR where λR is

given by (1.23), so that Pr[ESCR] ∼ 1−(c+1)e−c

1−e−c . The asymptotics of Theorem 1.2 are then that
for p = c

k ,

Pr[TREE] ∼ 1 − (c + 1)e−c. (1.29)

For p small

Pr[TREE] ∼ p2k2

2
, (1.30)

while for p very large

Pr[TREE] ∼ 1. (1.31)

1.5. The limiting Gaussian

In this section, we give an asymptotic normal law for M∗ and the consequent asymptotics of
A3. For M , by the fact that the Tj are independent, Esseen’s Inequality (or the Lindeberg–Feller
central limit theorem, or any of a wide variety of standard probability tools) gives that M is
asymptotically Gaussian with mean μ given in (1.11) and variance σ 2. Therefore, for any fixed
real u,

Pr[M ≤ μ + uσ ] ∼
∫ u

−∞
1√
2π

e−t2/2dt . (1.32)
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Theorem 1.5. Let M∗ be given by Definition 1. Then for any fixed real u

Pr[M∗ ≤ μ + uσ ] ∼
∫ u

−∞
1√
2π

e−t2/2dt . (1.33)

Here, importantly, μ is given by (1.11), the expectation of the unconditioned M . Theorem 1.5
then has the natural interpretation that conditioning on TREE does not change the asymptotic
distribution of M . The proof of Theorem 1.5 is deferred to Section 3.

We next use Theorem 1.5 to determine the asymptotics of A3. For this, we define σY by

σ 2
Y = pμ + p2σ 2. (1.34)

Proposition 1.6. With p given by (1.12) and σY given by (1.34), whenever p2σ 2 = O(pμ),

Pr[BIN[M∗, p] = l] ∼ σ−1
Y (2π)−1/2. (1.35)

Proof. For integral m ≥ 0, we define f (m) = Pr[BIN[m, p] = l]. We calculate f (m +
1)/ f (m) = (m + 1)(1 − p)/(m − l + 1). This quantity is one at m = μ − 1, greater than
one for m < μ − 1 and less than one for m > μ − 1 so the function f (m) is unimodal, hitting a
maximum at m = μ�. Stirling’s Formula gives f (μ�) ∼ (2πl)−1/2.

We write

Pr[BIN[M∗, p] = l] = E[ f (M∗)] = f (μ�)E[g(M∗)]
where we set g(m) = f (m)/ f (μ�) ≤ 1. Let K be a large positive constant, and let AK be the
event |M∗ − μ| ≤ Kσ . We split

E[g(M∗)] = E[g(M∗)I [AK ]]E[g(M∗)I [AK ]].
As g(m) ≤ 1 uniformly

E[g(M∗)I [AK ]] ≤ Pr[AK ] ∼ Pr[|N | > K ],
where N is the standard normal distribution. Parametrizing m = μ + xσ , Stirling’s Formula
yields

g(m) ∼ e− x2
2

p2σ2

pμ ,

uniformly over |x | ≤ K . (Roughly, BIN[μ + xσ, p] ∼ BIN[μ, p] + x pσ and so we want
BIN[μ, p] to be (x pσ)1/2/(pμ) standard deviations off the mean. Note that when p2σ 2 =
o(pμ), we simply have g(m) ∼ 1.) Thus

E[g(M∗)I [AK ]] ∼
∫ K

−K

1√
2π

e− x2
2 e− x2

2
p2σ2

pμ dx .

Now letting K → ∞, and using that Pr[|N | > K ] → 0, as well as

E[g(M∗)] ∼
∫ +∞

−∞
1√
2π

e− x2
2 σ 2

Y l−1 = l1/2σ−1
Y , (1.36)

we arrive at

E[ f (M∗)] ∼ (2πl)−1/2 E[g(M∗)] ∼ (2π)−1/2σ−1
Y . �
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Again we can look at the asymptotics (we will not need finer expressions) in the different
regimes.

1. When l is small, then pμ = l ∼ p2σ 2 and

σ 2
Y ∼ 2l. (1.37)

2. When l is large, say l ∼ kβ, then σ 2 p2 ∼ c2 f2(c)k with c satisfying f1(c) = β as in (1.19)
so that

σ 2
Y ∼ l(1 + c2 f2(c)β

−1). (1.38)

3. When l is very large, then σ 2 p2 = o(pμ) and

σ 2
Y ∼ l. (1.39)

2. Asymptotics for C(k, l)

We now use the results in the previous section, in particular Theorems 1.1, 1.2 and 1.5, to
derive the asymptotics for C(k, l). Indeed, for p given by (1.12), the asymptotics of all terms
in (1.6) are known except C(k, l). Hence we can solve for the asymptotics of C(k, l). While
Theorem 1.1 and the auxiliary results allow us to find the asymptotics of C(k, l) in theory, some
of the technical work can be challenging. Here we indicate some of the major cases.

It will be helpful not to use the precise p given by (1.12). Recall that Theorem 1.1 holds for
any value of p. For the moment let us write μ = μ(p), σ = σ(p), A2 = A2(p) and A3 = A3(p)

to emphasize this dependence.

Lemma 2.1. Let p0 be the value of p satisfying (1.12), i.e., p0μ(p0) = l. Let p be such that
p ∼ p0 and pμ(p) = l + o(l1/2). Then A2(p) ∼ A2(p0), σ(p) ∼ σ(p0) and A3(p) ∼ A3(p0).

Proof. The asymptotics of A2(p) = Pr[TREE] are given by (1.29)–(1.31) and clearly
have this property. Similarly the formulae (1.13), (1.16) and (1.17) show that σ(p) ∼
σ(p0). An examination of the proof of Proposition 1.6 gives that the asymptotics (1.35) of
Pr[BIN[M∗, p0] = l] apply to Pr[BIN[M∗, p] = l] as long as l − pμ(p) = o(l1/2) as the
integral (1.36) remains the same. �

2.1. l small

Theorem 2.2. When l = o(k1/2) and l → ∞,

C(k, l) ∼ kk−2k3l/2(e/12l)l/2(3π−1/2)l1/2. (2.1)

Proof. Setting p = k−3/2
√

12l we have from (1.16) that pμ = l + O(k4 p3 + 1) and
O(k4 p3) = O(k−1/2l3/2) = o(l1/2) as l = o(k1/2). Let p0 satisfy p0μ(p0) = l. Then p ∼ p0
by (1.16), and pμ = l + o(l1/2). Lemma 2.1 then gives A2(p) ∼ A2(p0) and A3(p) ∼ A3(p0).

We start with the exact formula

C(k, l) = A1 A2 A3 p−(k+l−1)(1 − p)
−
(

k
2

)
+(k+l−1)

. (2.2)

By (1.30), we have

A2 = Pr[TREE] ∼ 1

2
(kp)2 = 6lk−1. (2.3)
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We further have p2σ 2 + pμ ∼ 2l so that Proposition 1.6 and (1.37) give

A3 = Pr[BIN[M∗, p] = l] ∼ (2π)−1/2(2l)−1/2. (2.4)

We have to be quite careful with the asymptotics of the exact formula A1 = [1 − (1 − p)k]k−1

of Theorem 1.1. We have

1 − (1 − p)k = pk

(
1 − pk

2
+ p2k2

6
− p3k3

24
+ O(p4k4)

)
, (2.5)

and

ln

(
1 − pk

2
+ p2k2

6
− p3k3

24
+ O(p4k4)

)

= − pk

2
+ p2k2

6
− p3k3

24
− p2k2

8
+ p3k3

12
− p3k3

24
+ O(p4k4)

= − pk

2
+ l

2k
+ o(k−1). (2.6)

The p3k3 terms cancel and our assumption l = o(k1/2) implies that the error term O(p4k4) =
o(k−1). Hence the error term in ln A1 is o(1). This gives

A1 ∼ pk−1kk−1e−pk2/2el/2. (2.7)

We further have

pk+l−1 = pk−1(12l)l/2k−3l/2, (2.8)

and the asymptotics

(1 − p)k2/2 ∼ e−k2 p/2, (2.9)

while

(1 − p)k+l−1 ∼ 1. (2.10)

Then Theorem 1.1 puts everything together and yields (2.1). �

2.2. l large

In this section, we take l such that β ≡ l/k is uniformly bounded and uniformly positive,
and investigate the scaling of C(k, l) in this range. We state the result uniformly in β ∈ [ε, ε−1],
since we cannot fix β due to the fact that l = βk needs to be an integer. The main result is as
follows:

Theorem 2.3. Let ε > 0 be arbitrary and fixed. Then as k → ∞ and l = l(k) ∈ [εk, ε−1k],
C(k, kβ) ∼ A · Bk · k(1+β)k · k−3/2, (2.11)

where β = l/k, c is the solution to

e−c = 2(β + 1) − c

2(β + 1) + c
, (2.12)

A = c(c − 2β)√
8πβ(1 + c2 f2(c)/β)

e−c(β/2+1), (2.13)
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and

B = 2

cβ
√

4(β + 1)2 − c2
. (2.14)

Proof. Let l satisfy that l = l(k) ∈ [εk, ε−1k]. Then the p of (1.12) satisfies

p = c

k
+ O(k−2), (2.15)

where c is the solution to (2.12). Changing p by an additive O(k−2) term changes pμ(p) by
O(1). Lemma 2.1 allows us to set p = c

k with A2, A3 the same as for that p given by (1.12). We
get C(k, βk) from the equation

A1 A2 A3 = C(k, βk)pk+βk−1(1 − p)

(
k
2

)
−k−βk+1

. (2.16)

Here, taking care to note that the asymptotics (1 − p)k ∼ e−c are not sufficiently precise to give
the asymptotics of A1, we find

A1 ∼
(

1 − e−c
(

1 − c2

2k

))k−1

∼
(

2c

2(β + 1) + c

)k−1

e((β+1)/c−1/2)c2/2, (2.17)

while

A2 ∼ 1 − (c + 1)e−c, and A3 = 1√
2πkβ(1 + c2 f2(c)/β)

. (2.18)

Further,

pk(1+β)−1 =
( c

k

)k(1+β)−1
, (2.19)

while, taking care to estimate ln(1 − p) as −ck−1 − 1
2 c2k−2,

(1 − p)

(
k
2

)
−k(1+β)+1 ∼ e−kc/2−c2/4+c(β+1.5). (2.20)

Solving and employing uniformity of convergence we obtain Theorem 2.3. �

2.3. l very large

As a third example suppose l = ck ln k�. We prove the following result:

Theorem 2.4. For l = ck ln k� with c > 1
2 ,

C(k, l) ∼
(

k(k−1)
2

k + l − 1

)
. (2.21)

This has the interpretation that the proportion of graphs with k vertices and k + l − 1 edges
which are connected is asymptotically one, or that the probability that a random graph with k
vertices and k + l − 1 edges is connected is asymptotically one. As such, this is immediate from
a classic results of Erdős and Rényi [5].
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Proof. We again start from (2.2). Then (1.20) gives that p ∼ 2lk−2, which implies A1 ∼ A2 ∼ 1.
(Note that A1 ∼ 1 fails for c < 1

2 .) Further, Proposition 1.6 with the asymptotics in (1.39) gives
A3 ∼ (2πl)−1/2. It will be convenient to rewrite this as A3 ∼ (2π(k + l − 1))−1/2. We conclude
that

C(k, l) ∼ (2π(k + l − 1))−1/2 p−(k+l−1)(1 − p)
−
(

k
2

)
+(k+l−1)

= (2π B)−1/2 p−B(1 − p)−A+B , (2.22)

where we abbreviate A =
(

k
2

)
, B = k + l − 1. However, this is not a sufficiently precise

approximation of p to give the asymptotics of C(k, l). Rather, in the region p ∼ 2lk−2, the exact
expression (1.11) can be rewritten as follows:

Lemma 2.5.

μ =
(

k

2

)
− (k − 1)p−1 + k(k + 1)(1 − p)k

1 − (1 − p)k
. (2.23)

Proof. This is a simple calculation. �

By Lemma 2.5, and using that 1 − (1 − p)k ∼ 1, we obtain that

μ =
(

k

2

)
− (k − 1)p−1 + O(k2(1 − p)k). (2.24)

As we have required from (1.12) that pμ = l, we have

p

(
k

2

)
= k + l − 1 + O(pk2(1 − p)k). (2.25)

We note that(
A

B

)
pB(1 − p)A−B = Pr[BIN[A, p] = B] ∼ (2π B)−1/2, (2.26)

where the latter equality holds by the local central limit theorem for the binomial distribution

whenever B − p A = o(
√

p(1 − p)A). Note that by (2.25), with A =
(

k
2

)
and B = k + l − 1,

B − p A = (k + l − 1) − p

(
k

2

)
= O(pk2(1 − p)k) = o(

√
p(1 − p)A) = o(k

√
p),

(2.27)

precisely when

(1 − p)k
√

pk2 = o(1). (2.28)

At this stage we need only the weaker assumption l ∼ ck ln k with c > 1
4 . As p ∼ 2lk−2,

(pk2)1/2 = k−1/2+o(1). Also ln((1 − p)k) = k ln(1 − p) ∼ −kp ∼ 2c ln k, so that (1 − p)k =
k−2c+o(1) and (2.28) holds. Therefore, in this case, Theorem 1.1 gives

C(k, l)pB(1 − p)A−B ∼ (2π B)−1/2, (2.29)
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and thus we deduce

C(k, l) ∼
(

A

B

)
=
(

k(k−1)
2

k + l − 1

)
. � (2.30)

We note that in principle it is possible to extend the above asymptotics to other l for which
l
k → ∞, using Lemma 2.5 and more precise local central limit theorems for Pr[BIN[A, p] = B].

3. The technical theorems

In this section, we prove Theorems 1.2 and 1.5. The values λ, λR , the expected number of
balls in the first and last bins respectively, are given by (1.23). We start in Section 3.1 with the
easy case where p is large and very large. The remaining Sections 3.2–3.8 are devoted to the
hard case where k−3/2 	 p 	 k−1.

3.1. The easy case: p very large and p large

We note that the arguments for the “hard case” apply to the cases where p is large and very
large as well. However, many of the subtleties of the hard case can be avoided when p = Ω(k−1).
Here we give, without full details, a simpler argument that works in these important cases.

First suppose p � k−1. Let FAILt be the event Yt ≤ 0. For example, FAIL1 is the event
Z1 = 0 which has probability e−(1+o(1))λ which approaches zero. The event FAILk is the event
Z R

1 > 0 so Pr[FAILk] ≤ E[Z R
1 ] = λR → 0. In general, as each ball is dropped independently,

Z1 + · · · + Zt has distribution BIN[k − 1, α] where α = Pr[Tj ≤ i ] as given by the distribution
(1.1). (Near the right side it is easier to work with Pr[Y R

t ≤ 0].) Chernoff bounds give that∑k
t=1 Pr[FAILt ] → 0 and so Pr[TREE] → 1, giving Theorem 1.2. Conditioning on an event

that holds with probability 1 − o(1) cannot effect an asymptotic Gaussian distribution and so
Theorem 1.5 follows immediately for the very large case.

We next proceed with the case where p is large. Set p = c
k . Note λ, λR are given by

(1.23). We split bins into left, right and middle by Definition 4. We set L = ln2 k� for
definiteness, though a fairly wide range of L would do. With FAILt as above, Chernoff bounds
give

∑
L<t≤k−L Pr[FAILt ] = o(1). With probability 1 − o(1), no bin on the left nor right side

has more than ln2 k balls so that the total number of balls on the left and right side is less than
ln4 k. Thus, Pr[TREE] is within o(1) of the probability that both sides have less than ln4 k balls
and that the leftwalk satisfies ESCL and that the rightwalk satisfies ESCR

L .
Let Z∗

i ∼ Po(λ), 1 ≤ i ≤ L, be independent. Let Z R∗
i ∼ Po(λR), 1 ≤ i ≤ L, be

independent. Placing balls into the left and right sides with these distributions, with probability
1 − o(1), both left and right sides get less than ln4 k balls. Both Pr[ESCL ], Pr[ESCR

L ] are
within o(1) of Pr[ESC], Pr[ESCR] for the infinite walks and, as they are now independent,
Pr[ESCL ∧ ESCR

L ] would be within o(1) of Pr[ESC] Pr[ESCR]. For any fixed non-negative
integers x1, . . . , xL ; x R

1 , . . . , x R
L the probability that Zi = xi , 1 ≤ i ≤ L and Z R

i = x R
i ,

1 ≤ i ≤ L approaches the same probability with the Zi , Z R
i replaced by the independent

Poissons Z∗
i , Z R∗

i . Hence, Pr[TREE] is within o(1) of Pr[ESC] Pr[ESCR], giving Theorem 1.2.
We next proceed with the central limit theorem Theorem 1.5. The proof of this result is more

subtle, and we need to show that both mean and variance are not affected by the conditioning.
Consider any fixed non-negative integers x1, . . . , xL ; x R

1 , . . . , x R
L so that, with xi balls in bin
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i and x R
i balls in bin i R the events ESCL and ESCR

L both hold. Set mL = x1 + · · · + xL ,
m R = x R

1 + · · · + x R
L and further assume mL < ln4 k and m R < ln4 k. Let M∗∗ be the

distribution of
(

k
2

)
−∑

Tx where we assume that all remaining balls are placed in the middle

bins with the truncated geometric distribution. Thus, the law of M∗∗ is the law of M conditioned
on some fixed values of mL and m R satisfying that mL < ln4 k and m R < ln4 k. Let μ∗∗ =
E[M∗∗]. Then, the following proposition shows that the conditioning does not affect the mean
too much:

Proposition 3.1. For any fixed mL and m R satisfying that m L < ln4 k and m R < ln4 k, the
equality μ∗∗ − μ = O(k ln4 k) holds.

Proof. Let us call the distributions of M∗∗ and M fixededge and unrestricted respectively. There
are two differences between these distributions. First, the mL + m R balls are explicitly placed in
the fixededge distribution. The difference in expectation for any particular ball can be at most k
so the total difference for these less than ln4 k balls is less than k ln4 k. For the other balls, the
distinction is between the truncated geometric and the unrestricted distribution. Let YT , YU be
the placement of a single ball in these two distributions. Consider the experiment of selecting YT

from the unrestricted distribution and then reassigning it with the truncated geometric if it did not
land in a middle bin. With this linkage we have YT �= YU only when the reassignment is made
which occurs with probability O(k−1 ln2 k) for each ball. When it does occur for a given ball,
the values are, as always, within k. Hence, the difference in the expectations by reassigning one
ball is O(ln2 k). The total difference for all (at most k) of these balls is then O(k ln2 k). Thus,
μ∗∗ − μ = O(k ln4 k) + O(k ln2 k), giving Proposition 3.1. �

Next we claim that M∗∗ satisfies the asymptotic Gaussian (1.32). We may write M∗∗ =
α −∑

T ∗∗
j where α is a constant which depends on the fixed placement, the sum ranges over

those j for which ball j goes into the middle, and T ∗∗
j has the distribution of T given by

(1.1) conditioned on it being in the middle. We claim M∗∗ has variance ∼σ 2 with σ 2 given
by (1.13). For M, M∗∗ the variance comes from the independent Tj , T ∗∗

j respectively. There

are k − 1 and ∼k terms respectively. The variance of each Tj and each T ∗∗
j is ∼ f2(c)k2.

An easy way to see this is that k−1T ∗∗
j has the asymptotic continuous distribution on [0, 1]

with density e−cx/(1 − e−c), which is the asymptotic law of k−1Tj when k → ∞. From
Esseen’s Inequality, M∗∗ is asymptotically Gaussian with mean μ∗∗ and variance ∼σ 2. Since
μ − μ∗∗ = O(k ln4 k) = o(k3/2), M∗∗ is asymptotically Gaussian with the original μ, σ 2.

Finally, we consider M∗. In the unconditioned placement of balls the probability that either
mL > ln4 k or m R > ln4 k was o(1). We are now conditioning on TREE but we have already
shown that, in this regime, Pr[TREE] is bounded away from zero. Hence, in the conditioned
placement of balls the probability that either mL > ln4 k or m R > ln4 k is still o(1). We
have also shown that Pr[TREE] = (1 + o(1)) Pr[ESCL ∧ ESCR

L ]. Therefore, conditioning on
TREE is equivalent to conditioning on ESCL ∧ ESCR

L , which only changes the law of the balls
placed in the left and right bins. Therefore, excluding o(1) probability, M∗ is a combination of
distributions M∗∗, where the laws of mL and m R are the conditional laws given ESCL ∧ ESCR

L .
For any fixed value of mL and m R , satisfying mL < ln4 k and m R < ln4 k, the corresponding
M∗∗ is asymptotically Gaussian with the same mean and variance. Hence, M∗ is as well. This
completes the proof of Theorem 1.5 in the case when p is large. �
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3.2. The hard case

In Sections 3.2–3.8, we study the general case where pk3/2 → ∞ and pk → 0. Our
arguments can be made considerably simpler when p is not too close to the lower bound k−3/2.
When we present the general results, we will indicate the simplification when p = k−1.4. These
simplifications actually work down to k−3/2 times a polylog factor.

We split the k bins into left, middle and right sides as given by Definition 4. We carefully
choose L so that

(kp)−2 	 L 	 k−1/2 p−1. (3.1)

For example, when p = k−1.4, we set L = k0.85, far away from both bounds of (3.1).
Note that the lower bound of (1.10) on p allows us to do this. Also note that k−1/2 p−1 	 k

so that

L 	 k. (3.2)

We set

ε = pk

2
= o(1), (3.3)

since p is small. A careful analysis of (1.1) gives that

Pr[Tj = i ] = 1

k
(1 + ε + o(ε)) for 1 ≤ i ≤ L, (3.4)

and

Pr[Tj = i R] = 1

k
(1 − ε + o(ε)) for 1 ≤ i ≤ L . (3.5)

Roughly speaking, each bin on the left side will get Po(1 + ε) balls, while the bins on the right
side will get Po(1 − ε) balls. It will turn out that the event TREE is dominated by the events of
(1.3) for 1 ≤ t ≤ L and the events of (1.22) for 1 ≤ t ≤ L.

3.3. Scaling for small bias walks

Mathematical physicists well understand that walks with a bias ε = o(1) are naturally scaled
by time ε−2. Up to time O(ε−2) the walk behaves as if it had zero drift and afterwards the drift
takes over. Propositions 3.2 and 3.3 below investigate the probability of never returning to the
starting point, and are quite natural. We write Pr∗ε for the law where each bin 1, 2, . . . receives a
Poisson (1 + ε) number of balls.

Proposition 3.2. If ε → 0+ and L → ∞ is such that L � ε−2, then Pr∗ε [ESCL ] ∼ 2ε.

Proof. As Pr∗ε [ESC] ∼ 2ε it suffices to show Pr∗ε [¬ESC ∧ ESCL ] = o(ε).
In the simpler case when p = k−1.4 so ε = k−0.4/2 and L = k0.85, we can bound Pr∗ε [ESCL]

by the sum over t > L of Pr∗ε [Z1 + · · · + Zt < t]. Here Z1 + · · · + Zt ∼ Po(t (1 + ε)). Basic
Chernoff bounds show that this probability is so low and drops so fast that summed over all
t > L it is o(ε). Indeed, it is of the form exp[−kc+o(1)] for some positive constant c. Now we
extend the proof to the small p′s for which pk3/2 → ∞.
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Consider the infinite walk and let W be the number of t ≥ L such that Yt ≤ Lε
2 . Parametrize

t = Lx . Then

Pr∗ε
[

Yt ≤ Lε

2

]
≤ Pr∗ε

[
Po(Lx(1 + ε)) ≤ Lx + Lxε

2

]
. (3.6)

Basic Chernoff bounds give that this is at most exp[−(Lxε)2/8(Lx(1 + ε))] ≤ exp[−Lε2x/16].
Since Lε2 � 1, this probability is o(1) for every x ∈ (0, 1) fixed. Therefore, by linearity of
expectation, E[W ] = o(L). Let B be the event that Yt = 0 for some t ≥ L. Then we claim that
E[W |B] ≥ 0.48L.

Indeed, consider the first such t ≥ L with Yt = 0. Conditionally on the history up to time t ,
we have Pr∗ε [Yt+s ≤ Lε/2] ≥ 0.99 for all 0 ≤ s ≤ L(0.49). As E[W ] ≥ E[W |B] Pr∗ε [B], we
deduce that Pr∗ε [B] = o(1). Now ESCL is an increasing event and B is a decreasing event, so
that by the FKG inequality

Pr∗ε [ESCL ∧ B] ≤ Pr∗ε [ESCL] Pr∗ε [B], (3.7)

so that Pr∗ε [ESCL ∧ ¬ESC] = Pr∗ε [ESCL ∧ B] = o(ε). Since, by Theorem 1.3, we have
Pr∗ε [ESC] ∼ 2ε, Proposition 3.2 follows. �

The next proposition gives a similar result for ESCR
L . In its statement, we let Pr∗R,ε denote the

probability law where each bin 1, 2, . . . ,∞ receives a Poisson (1 − ε) number of balls.

Proposition 3.3. If ε → 0+ and L → ∞ is such that L � ε−2, then Pr∗R,ε[ESCR
L ] ∼ ε.

Proof. Similar to the proof of Proposition 3.2. �

We further require two small extensions:

Corollary 3.4. Let ε → 0+ and L � ε−2. Let λ1, . . . , λL be such that all λi = 1 + ε + o(ε).
Let Zi ∼ Po(λi ) be independent and consider the leftwalk defined by Definition 2. Then
Pr[ESCL ] ∼ 2ε.

Proof. For any fixed δ > 0 we can sandwich this model between one in which all λi =
1 + ε(1 − δ) and one in which all λi = 1 − ε(1 − δ). From Proposition 3.2 we bound
Pr[ESCL ] between ∼ 2ε(1 − δ) and ∼ 2ε(1 + δ). As δ can be arbitrarily small this gives
Corollary 3.4. �

Corollary 3.5. Let ε → 0+ and L � ε−2. Let λR
1 , . . . , λR

L be such that all λR
i = 1 − ε + o(ε).

Let Z R
i ∼ Po(λR

i ) be independent and consider the rightwalk defined by Definition 3. Then
Pr[ESCR

L ] ∼ ε.

Proof. Similar to the proof of Corollary 3.4, now using Proposition 3.3 instead of
Proposition 3.2. �

3.4. Poisson versus fixed

It will often be convenient to start with a Poisson number of balls with parameter k, rather than
with precisely k balls. Indeed, in the Poisson case, the numbers of balls per bin are independent
Poisson random variables, which is often quite convenient in the analysis. Therefore, sometimes
we wish to compare the probability that an event holds when we use a Poisson number of balls
to the probability that the event holds when we use a fixed number of balls. In this section, we
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prove a result that allows us to compare these probabilities, and which will in particular allow us
to convert a probability for the Poisson law into a statement for the probability of the event for a
fixed number of balls.

We first introduce some notation that allows us to make this comparison. Consider an event
A that depends on a non-negative integer variable X . Let g(λ) be Pr[A] when X has a Poisson
distribution with mean λ. Let f (m) be Pr[A] when X = m. (As an important example, drop X
balls into bins 1, . . . , L with left-tilt p.) These are related by the equality

g(λ) =
∞∑

m=0

f (m) Pr[Po(λ) = m]. (3.8)

Here we want to go from asymptotics of g to asymptotics of f . We would naturally want to say
that g(m) and f (m) are quite close. This is true when f and g are increasing or decreasing.

We say A is increasing if f, g are increasing; decreasing if f, g are decreasing and monotone
if one of those hold. For balls into bins models, an event A is increasing when A keeps on holding
when extra balls are added. An event A is decreasing when Ac is increasing. In particular, ESCL ,
ESCR

L are increasing and decreasing respectively. When A is monotone and g is relatively smooth
the following result allows us to derive the asymptotics of f from those of g:

Lemma 3.6. Let λ1, λ2 → ∞ with λ2 = λ1 + ωλ
1/2
1 where ω → ∞. Suppose g(λ1) ∼ g(λ2).

Then:
If A is increasing, then f (λ1) ≤ (1 + o(1))g(λ2).
If A is decreasing, then f (λ2) ≤ (1 + o(1))g(λ1).
If A is increasing, then f (λ2) ≥ (1 + o(1))g(λ1).
If A is decreasing, then f (λ1) ≥ (1 + o(1))g(λ2).

Proof. Assume A is increasing. Truncating (3.8) to m ≥ λ1 gives g(λ2) ≥ f (λ1) Pr[Po(λ2) ≥
λ1]. Chebyschev’s Inequality gives that the probability is 1 − o(1), giving the first part of
Lemma 3.6. Now we show the third part. Calculation gives that for j ≥ λ2, Pr[Po(λ2) = j ] �
Pr[Po(λ1) = j ]. Now consider the expansion (3.8) for both λ = λ1 and λ = λ2. We bound∑

m≥λ2

f (m) Pr[Po(λ1) = m] 	
∑

m≥λ2

f (m) Pr[Po(λ2) = m] ≤ g(λ2) ∼ g(λ1), (3.9)

so that

g(λ1) ∼
∑

m<λ2

f (m) Pr[Po(λ1) = m] ≤ f (λ2). (3.10)

Statements two and four are similar. �

In application we will deal with situations in which g(λ) is asymptotically constant in an
interval around λ0 of width � √

λ0. In that case f (m) ∼ g(m) for all m in that interval.

3.5. The probability of TREE in the left, right and middle bins

In this section, we investigate the probabilities of TREE in the left, right and middle bins.
The main results are Propositions 3.7–3.9. In Sections 3.6 and 3.7, these results, as well as
Corollaries 3.4 and 3.5, will be combined to prove Theorem 1.2.

We first use Lemma 3.6 together with the results in Corollaries 3.4 and 3.5 to investigate the
probabilities of ESCL and of ESCR

L :
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Proposition 3.7. Let ε → 0+ and L � ε−2. Let m = L(1 + ε + o(ε)). Let p1, . . . , pL all have
pi = 1

L + o( ε
L ). Let f (m) denote the probability of ESCL when precisely m balls are placed in

bins 1, . . . , L according to this distribution. Then f (m) ∼ 2ε.

Proof. Let g(λ) denote the probability when the number of balls is Poisson with mean λ.
Corollary 3.4 gives that g(λ) ∼ 2ε for any λ for which λ = L(1 + ε + o(ε)). But Lε � √

L as
L � ε−2. Thus in this range f (m) ∼ g(m) by Lemma 3.6. �

Proposition 3.8. Let ε → 0+ and L � ε−2. Let m = L(1 − ε + o(ε)). Let pR
1 , . . . , pR

L have all
pR

i = 1
L + o( ε

L ). Let f (m) denote the probability of ESCR
L when precisely m balls are placed in

bins 1, . . . , L according to this distribution. Then f (m) ∼ ε.

Proof. Similar to that of Proposition 3.7, now using Corollary 3.5 instead of Corollary 3.4. �

The following result will be used to show that most placements of balls which are good on the
left and right sides are also good in the middle. This will be a crucial step in order to show that
the probability of TREE is asymptotic to the probability of ESCL ∧ ESCR

L .

Proposition 3.9. Let M balls be placed uniformly in bins 1, . . . , M, let Zi be the number of balls
in bin i , and define a walk by Y0 = 0, Yi = Yi−1 + Zi − 1 for 1 ≤ i ≤ M. Set MIN equal to the
minimum of Yi , 0 ≤ i ≤ M. Assume M, s → ∞. Then

Pr[MIN < −s
√

M] = o(1). (3.11)

Proof. The proof makes essential use of Lemma 3.6. First suppose all Zi ∼ Po(1), independent.
As s → ∞, Pr[YM < −s

√
M] = o(1). Let Fi be the event that Yi < −s

√
M , while

Y j ≥ −s
√

M for all j < i . If Fi occurs, then, by the strong Markov property,

Pr[YM < −s
√

M |Fi ] ≥ Pr[YM−i ≤ 0] ≥ c, (3.12)

where c > 0 uniformly in M, i . Therefore, since the Fi are disjoint and
∨

Fi = {MIN <

−s
√

M}, we obtain that Pr[∨ Fi ] = o(1). In the terminology of Lemma 3.6, we have g(M) =
o(1) as the total number of balls is Poisson with mean M . Since the event {MIN < −s

√
M}

is decreasing, we also obtain that f (M) = o(1), where f (M) = Pr[MIN < −s
√

M]. Indeed,
in this simple case, this can also be obtained directly by truncating (3.8), and thus noting that
g(M) ≥ f (M) Pr[Po(M) ≤ M], so that f (M) = o(1). �

Corollary 3.10. Assume M, s → ∞ and that A, B ≥ s
√

M. Let M + B − A balls be placed
uniformly in bins 1, . . . , M. Let Zi be the number of balls in bin i , and define a walk by Y0 = A,
Yi = Yi−1 + Zi − 1 for 1 ≤ i ≤ M so that YM = B. Set MIN equal to the minimum of Yi ,
0 ≤ i ≤ M. Then

Pr[MIN ≤ 0] = o(1). (3.13)

Proof. When A = B this is simply Proposition 3.9 with the walk raised by A. If A < B , then
ignore the first B − A balls so that now the walk goes from A to A. If A > B , then we add A − B
fictitious balls so now the walk goes from A to A and then we lower the walk by A − B so it
goes from B to B . In both cases we have only increased the probability that the walk hits zero.
In both cases we have reduced to the A = B case and so (3.13) holds. �
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3.6. A simple upper bound on Pr[TREE]

In this section, we combine Corollaries 3.4 and 3.5 to prove the upper bound on Pr[TREE]
in Theorem 1.2. To obtain this upper bound, it will be useful to relate the problem of a fixed
number of balls to a Poisson number of balls. This relation is stated in Proposition 3.11, and will
also be instrumental in the remainder of the proof of Theorem 1.2, as well as in the proof of
Theorem 1.5.

Recall that M =
(

k
2

)
−∑

j Tj . Let Pr∗�λ be the law where the number Zi of balls in bin i is a

Poisson random variable with mean λi . Later we will choose λi appropriately. We write

Λ =
k∑

i=1

λi , (3.14)

and, in this section, use the notation Pr �p to denote the law of Zi , where k − 1 balls are put into k
bins, and the probability to put the j th ball into the i th bin is equal to, for i = 1, . . . , k,

pi = Pr[Tj = i ] = λi

Λ
. (3.15)

Note that we recover (1.1) when we choose

λ∗
i = (k − 1)

p(1 − p)i

1 − (1 − p)k
, (3.16)

for which

Λ = k − 1. (3.17)

Therefore, for this choice, we have that Pr �p = Pr. We will write Pr∗ = Pr∗�λ∗ when we use
λ∗

1, . . . , λ
∗
k in (3.16). However, later on, it will be convenient to work with more general choices

of λ1, . . . , λk .
The laws of TREE under Pr∗�p and Pr�λ are related as follows:

Proposition 3.11. For every λ1, . . . , λk , and every random variable X,

E �p[I [TREE]X] =
E∗

�λ[I [TREE]X]
Pr∗�λ[Po(Λ) = k − 1] , (3.18)

where the tilt p1, . . . , pk is related to the parameters of the Poisson distribution λ1, . . . , λk by
(3.15).

Proof. This result is classical when we note that TREE = TREE ∧ {∑k
i=1 Zi = k − 1}, and the

fact that
∑k

i=1 Zi has law Po(Λ). Therefore, the claim is identical to the statement that

E �p[I [TREE]X] = E∗
�λ

[
I [TREE]X

∣∣∣∣∣
k−1∑
i=1

Zi = k − 1

]
. � (3.19)

We continue by using Proposition 3.11 to prove a simple bound for the probability of TREE
which is useful in the course of the proof:
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Proposition 3.12. For L = o(k), and with λi given by (3.16) and pi by (3.15), then

Pr[TREE] ≤ (1 + o(1)) Pr∗[ESCL] Pr∗[ESCR
L ]. (3.20)

The same conclusion holds when �λ = (λ1, . . . , λk) satisfies that Λ = k + o(
√

k), and pi is
defined by (3.15).

Proof. We first use that for �p as in (3.15), we have Pr �p = Pr, while for �λ as in (3.16), we have
Pr∗ = Pr∗�λ.

We use Proposition 3.11 with X = 1,

Pr[TREE] = Pr∗[TREE]
Pr∗[Po(Λ) = k − 1] . (3.21)

Let μL , μR be the expected number of balls in the first L and the last L bins respectively. From
(3.4) and (3.5), we obtain that μL = L(1 + ε + o(ε)) and μR = L(1 − ε + o(ε)). Let mL , m R

be the actual number of balls in the first L and the last L bins respectively. Then we use that

Pr∗[TREE] ≤
∑
A,B

Pr∗[ESCL ∧ {mL = A}] Pr∗[ESCR
L ∧ {m R = B}]

× Pr∗
[

k−L−1∑
i=L+1

Zi = k − 1 − A − B

]
, (3.22)

since we omit the requirements on the middle bins imposed by TREE. However, uniformly in
A, B ,

Pr∗
[

k−L−1∑
i=L+1

Zi = k − 1 − A − B

]
= Pr∗ [Po(Λ − μL − μR) = k − 1 − A − B] (3.23)

≤ Pr∗ [Po(Λ − μL − μR) = Λ − μL − μR�]

∼ 1√
2π(Λ − μL − μR)

,

since Pr∗ [Po(λ) = l] is maximal when l = λ�.
Since Λ = k + o(

√
k) and μL + μR = o(k), we have that

Λ − μL − μR = k + o(k), (3.24)

so that

Pr∗ [Po(Λ − μL − μR) = Λ − μL − μR�] ∼ 1√
2πk

∼ Pr∗[Po(Λ) = k − 1]. (3.25)

Performing the sums over A, B gives that

Pr[TREE] ≤ (1 + o(1)) Pr∗[ESCL] Pr∗[ESCR
L ]. � (3.26)

Application of Corollaries 3.4 and 3.5 leads to the following upper bound on Pr[TREE], when
we use that L � ε−2:

Corollary 3.13. For pk3/2 → ∞ and pk → 0,

Pr[TREE] ≤ (1 + o(1))2ε2. (3.27)
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The same conclusion holds for Pr �p[TREE] when pi is given by (3.15), and λi = 1 + ε + o(ε)

for every i = o(k), and λi = 1 − ε + o(ε) for every i such that k − i = o(k), while
Λ = k + o(

√
k). �

3.7. The hard case: Pr[TREE]

In this section, we complete the proof of Theorem 1.2. By Proposition 3.12, it suffices to prove
a lower bound.

We place k − 1 balls into bins 1, . . . , k with left-tilt p as given by (1.1). Recall that mL , m R

are the actual number of balls in the first L and the last L bins respectively. Note that mL , m R

have Binomial distributions with k − 1 coin flips (the balls) and probability of success μL
k−1 and

μR
k−1 respectively. With foresight, we fix ω such that

ω
√

L 	 √
k and ω 	 ε

√
L and ω → +∞. (3.28)

The assumed bounds in (3.2) allow us to find such ω. We say that placement of balls is normal if
|mL − μL | < ω

√
L and |m R − μR | < ω

√
L.

We shall naturally refer to a partial placement of balls into the left and right sides, leaving the
placement into the middle bins undetermined, as normal if it meets the above criteria. We first
prove an extension of Theorem 1.2, which will also be useful in proving Theorem 1.5.

Theorem 3.14. Assume that pk3/2 → ∞ and pk → 0. Then, with probability ∼2ε2, the event
TREE occurs and the placement is normal. Consequently, Pr[TREE] ∼ 2ε2.

Clearly, Theorem 1.2 is a consequence of Theorem 3.14. We first describe a simple example.
When p = k−1.4 and L = k0.85, we set ω = k0.001. Now the probability of a placement not being
normal is o(ε2) and so may be ignored. We now extend the proof to all p′s with pk3/2 → ∞:

Proof. Let NICE denote the event ESCL ∧ ESCR
L ∧ {mL, m R normal}. From Propositions 3.7

and 3.8,

Pr[ESCL |mL = A] ∼ 2ε, and Pr[ESCR
L |m R = B] ∼ ε, (3.29)

for every normal A and B . Thus

Pr[NICE] =
∑

A,B normal

Pr[ESCL ∧ ESCR
L |mL = A, m R = B] Pr[mL = A, m R = B]

∼ 2ε2 Pr[mL, m R normal] ∼ 2ε2, (3.30)

where we use that Pr[mL, m R normal] ∼ 1.
We effectively need to show that there is “no middle sag,” that such paths do not usually hit

zero somewhere in the middle. When p = k−1.4 and L = k0.85 simple Chernoff bounds give that
Pr[Yi ≤ 0] is exceeding small for any middle i . Summing over all middle i the probability that
some middle i has Yi ≤ 0 is o(ε2) and so may be ignored. However, the argument for all p with
p � k−3/2 is surprisingly delicate. We will show Pr[TREE|NICE] = 1 − o(1). We shall do this
in two steps.

We shall first extend the paths from L to a larger L ′ defined below and then complete the path.
Let L ′ satisfy

k−1/2 p−1 	 L ′ 	 k (3.31)
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and let ω′ satisfy

ω′√L ′ 	 √
k and ω′ 	 √

L ′ and ω′ → +∞. (3.32)

Let mL ′ , m R′ denote the actual number of balls in the first L ′ and the last L ′ bins respectively
and let μL ′ , μR′ be the expected number of such balls. We say that a placement of balls is L ′-
normal if |mL ′ − μL ′ | < ω′√L ′ and |m R′ − μR′ | < ω′√L ′.

Let NICE′ denote the event ESCL ′ ∧ESCR
L ′ ∧{mL ′, m R′ L ′−normal}. The arguments yielding

(3.30) hold for these values. That is, NICE and NICE′ each hold with probability ∼2ε2.
Corollaries 3.4 and 3.5 give that ESCL ∧ ESCR

L has probability ∼2ε2. Thus the probability
that ESCL and ESCR

L occur, but that mL , m R are not both normal is o(ε2). For NICE′ to hold and
NICE to fail these would all need to occur. Hence Pr[NICE′ ∧ NICE] ∼ 2ε2. That is,

Pr[NICE′|NICE] = 1 − o(1). (3.33)

Now we want to show Pr[TREE|NICE′] = 1 − o(1). It suffices to show this conditioning on
explicit normal values mL ′, m R′ . Set A = 1 + mL ′ − L ′ and B = L ′ − m R′ . We now consider
the middle bins as those not amongst the first or last L ′ bins. In the middle we are placing balls
with left-tilt p and considering a walk that begins at A and ends at B . Our normality assumption
and (3.31) imply

A ∼ B ∼ L ′ε � √
k. (3.34)

We claim with probability 1−o(1), the walk will not hit zero. Removing the tilt moves balls to the
right, which makes it more likely that the walk does hit zero. Therefore, it suffices to show this
when the balls are placed with uniform probability in each bin. This is precisely Corollary 3.10,
where M = k − 2L ′. Note that our selection (3.31) of L ′ has assured M ∼ k and A, B � √

k,
so that the conditions of Corollary 3.10 are met.

We conclude that conditioning on NICE′ and any particular normal mL ′, m R′ the event TREE
holds with probability asymptotic to one. Hence

Pr[TREE|NICE′] = 1 − o(1). (3.35)

Combining this with (3.33) gives

Pr[TREE|NICE] = 1 − o(1). (3.36)

Combined with (3.30), Pr[TREE ∧ NICE] ∼ 2ε2, the first part of Theorem 3.14. The upper
bound (3.27) completes the proof. �

3.8. The hard case: Asymptotic Gaussian

In this section, we prove Theorem 1.5. This proof relies on the rewrite in Proposition 3.11. We
therefore only need to investigate the law of M under the measure Pr∗�λ for an appropriate choice

of �λ. For this, we note that we can rewrite

k−1∑
j=1

Tj =
k∑

i=1

i Zi , (3.37)

where Zi is the number of balls placed in the i th bin. Recall that Zi is Po(λi ), where λi is defined
in (3.16).
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Define, for every t ∈ R,

λi,t = λi et (i−k/2), (3.38)

and write Pr∗t = Pr∗�λt
for the law of the process when Zi is Po(λi,t ) for all i = 1, . . . , k. We also

write E∗
t for the expectation w.r.t. Pr∗t . Note that E∗ = E∗

0 . We also note that in this case, with

pi,t = λi,t

Λt
, where Λt =

k∑
i=1

λi,t , (3.39)

we have that

pi,t = pt (1 − pt)
i−1

1 − (1 − pt )k , (3.40)

where

1 − pt = (1 − p)et , so that pt = p + (1 − p)(et − 1). (3.41)

Therefore, the probabilities for the different bins still follow the tilted distribution in (1.1).
The proposition below gives an explicit equality for the moment generating function of

M − E∗[M] conditionally on TREE:

Proposition 3.15. The equality

E∗
0 (e−t (M−E∗[M])|TREE) = e

k∑
i=1

λi
[
et (i−k/2)−1−t (i−k/2)

]
Pr∗t [TREE]
Pr∗0[TREE] (3.42)

holds.

Proof. When TREE holds, then

Z1 + · · · + Zk = k − 1. (3.43)

Therefore, when TREE holds, and using (3.37),

M =
(

k

2

)
−

k−1∑
j=1

Tj = −
k∑

i=1

(i − k/2)Zi . (3.44)

Similarly, since

k∑
i=1

E∗[Zi ] =
k∑

i=1

λi = k − 1, (3.45)

we also have that

E∗[M] = E∗
[(

k

2

)
−

k−1∑
j=1

Tj

]
= −

k∑
i=1

(i − k/2)E∗[Zi ], (3.46)

so that we arrive at the equality that, when TREE holds,

M − E∗[M] = −
k∑

i=1

(i − k/2)(Zi − E∗[Zi ]). (3.47)
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Therefore, we can write out

E∗
0 (e−t (M−E∗[M])|TREE)

= 1

Pr∗0[TREE]e
−t

k∑
i=1

(i−k/2)λi ∑
�z∈Nk

e
t

k∑
i=1

(i−k/2)zi
k∏

i=1

e−λi
λ

zi
i

zi ! I [TREE]

= 1

Pr∗0[TREE]e
−t

k∑
i=1

(i−k/2)λi ∑
�z∈Nk

n∏
i=1

e−λi
[et (i−k/2)λi ]zi

zi ! I [TREE]

= 1

Pr∗0[TREE]e
−t

k∑
i=1

(i−k/2)λi
e

k∑
i=1

(λi,t −λi ) ∑
�z∈Nn

n∏
i=1

e−λi,t
λ

zi
i,t

zi ! I [TREE]

= e

k∑
i=1

λi [et (i−k/2)−1−t (i−k/2)] Pr∗t [TREE]
Pr∗0[TREE] . � (3.48)

We now formulate a corollary of Proposition 3.15. In this statement, we write Prt for the
measure where the tilt is given by (3.39), and where λi,t is given by (3.38).

Corollary 3.16. Let tk = tk−3/2 and assume that p satisfies pk3/2 → ∞ and p 	 k−1. Then,
for every t ∈ R fixed,

Prtk [TREE] = 2ε2(1 + o(1)). (3.49)

Consequently, for Pr and conditionally on TREE, the random variable k−3/2(M − E∗[M])
converges weakly to a normal distribution with variance 1

12 .

We conclude from Corollary 3.16 that we obtain the central limit theorem ‘for free’ from the
scaling of the probability of TREE, which holds for all t ∈ R fixed. As a consequence, we obtain
that Theorem 1.5 holds. Therefore, we are left to prove Corollary 3.16.

Proof. The equality in (3.49) follows by Theorem 3.14, using the extensions in Corollaries 3.4
and 3.5, together with the fact that ptk = p(1 + o(1)) under the assumptions in Corollary 3.16.
Therefore, we obtain from Theorem 3.14 that

Prtk [TREE] ∼ Pr[TREE]. (3.50)

To prove the asymptotic normality of k−3/2(M − E∗[M]) conditionally on TREE, we start by
using Proposition 3.11, which implies that

E[e−tk(M−E∗[M]) I [TREE]] =
E∗
[
e−tk(M−E∗[M]) I [TREE]

]
Pr∗[Po(Λ) = k − 1] . (3.51)

Then we use Proposition 3.15 to obtain that

E
[
e−tk(M−E∗[M])|TREE

]

= e

k∑
i=1

λi [etk (i−k/2)−1−tk(i−k/2)] Prtk [TREE]
Pr[TREE]

Pr∗[Po(Λtk ) = k − 1]
Pr∗[Po(Λ) = k − 1] . (3.52)
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Furthermore, using that λi − 1 = O(ε) uniformly in i , we can compute the exponent of the first
factor as

k∑
i=1

λi [etk(i−k/2) − 1 − tk(i − k/2)] = 1

2

k∑
i=1

λi (i − k/2)2t2
k

+ O

(
k∑

i=1

|i − k/2|3t3
k

)

= 1

2

k∑
i=1

(i − k/2)2t2
k

+ O

(
k∑

i=1

|i − k/2|3t3
k

)
+ O(ε)

=
k/2∑
i=0

(i − k/2)2t2k−3 + O(k−1/2 + ε)

= t2

24
+ O(k−1/2 + ε). (3.53)

Moreover, since

Λtk =
k∑

i=1

λi,tk =
k∑

i=1

λi +
k∑

i=1

λi [etk(i−k/2) − 1]

= k − 1 +
k∑

i=1

λi tk(i − k/2) + O

(
k∑

i=1

λi [tk(i − k/2)]2

)

= k − 1 +
k∑

i=1

tk(i − k/2) +
k∑

i=1

(λi − 1)tk(i − k/2) + O

(
k∑

i=1

λi [tk(i − k/2)]2

)

= k + o(k1/2), (3.54)

the local central limit theorem for Pr∗[Po(Λtk ) = k − 1] remains valid and we obtain

Pr∗[Po(Λtk ) = k − 1] ∼ Pr∗[Po(Λ) = k − 1]. (3.55)

Together with (3.50), we conclude that

E0

(
e
− t

k3/2 (M−E∗[M])|TREE
)

∼ et2/24. (3.56)

Since et2/24 is the moment generating function of a Gaussian random variable with mean 0 and
variance 1/12, this completes the proof of Corollary 3.16. �
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