434 research outputs found

    On Quasiminimal Excellent Classes

    Get PDF
    A careful exposition of Zilber's quasiminimal excellent classes and their categoricity is given, leading to two new results: the L_w1,w(Q)-definability assumption may be dropped, and each class is determined by its model of dimension aleph_0.Comment: 16 pages. v3: correction to the statement of corollary 5.

    On properties of (weakly) small groups

    Full text link
    A group is small if it has countably many complete nn-types over the empty set for each natural number n. More generally, a group GG is weakly small if it has countably many complete 1-types over every finite subset of G. We show here that in a weakly small group, subgroups which are definable with parameters lying in a finitely generated algebraic closure satisfy the descending chain conditions for their traces in any finitely generated algebraic closure. An infinite weakly small group has an infinite abelian subgroup, which may not be definable. A small nilpotent group is the central product of a definable divisible group with a definable one of bounded exponent. In a group with simple theory, any set of pairwise commuting elements is contained in a definable finite-by-abelian subgroup. First corollary : a weakly small group with simple theory has an infinite definable finite-by-abelian subgoup. Secondly, in a group with simple theory, a normal solvable group A of derived length n is contained in an A-definable almost solvable group of class n

    Invariant measures concentrated on countable structures

    Get PDF
    Let L be a countable language. We say that a countable infinite L-structure M admits an invariant measure when there is a probability measure on the space of L-structures with the same underlying set as M that is invariant under permutations of that set, and that assigns measure one to the isomorphism class of M. We show that M admits an invariant measure if and only if it has trivial definable closure, i.e., the pointwise stabilizer in Aut(M) of an arbitrary finite tuple of M fixes no additional points. When M is a Fraisse limit in a relational language, this amounts to requiring that the age of M have strong amalgamation. Our results give rise to new instances of structures that admit invariant measures and structures that do not.Comment: 46 pages, 2 figures. Small changes following referee suggestion
    corecore