9 research outputs found

    Beyond Prediction: On-street Parking Recommendation using Heterogeneous Graph-based List-wise Ranking

    Full text link
    To provide real-time parking information, existing studies focus on predicting parking availability, which seems an indirect approach to saving drivers' cruising time. In this paper, we first time propose an on-street parking recommendation (OPR) task to directly recommend a parking space for a driver. To this end, a learn-to-rank (LTR) based OPR model called OPR-LTR is built. Specifically, parking recommendation is closely related to the "turnover events" (state switching between occupied and vacant) of each parking space, and hence we design a highly efficient heterogeneous graph called ESGraph to represent historical and real-time meters' turnover events as well as geographical relations; afterward, a convolution-based event-then-graph network is used to aggregate and update representations of the heterogeneous graph. A ranking model is further utilized to learn a score function that helps recommend a list of ranked parking spots for a specific on-street parking query. The method is verified using the on-street parking meter data in Hong Kong and San Francisco. By comparing with the other two types of methods: prediction-only and prediction-then-recommendation, the proposed direct-recommendation method achieves satisfactory performance in different metrics. Extensive experiments also demonstrate that the proposed ESGraph and the recommendation model are more efficient in terms of computational efficiency as well as saving drivers' on-street parking time

    Robust learning to rank models and their biomedical applications

    Get PDF
    There exist many real-world applications such as recommendation systems, document retrieval, and computational biology where the correct ordering of instances is of equal or greater importance than predicting the exact value of some discrete or continuous outcome. Learning-to-Rank (LTR) refers to a group of algorithms that apply machine learning techniques to tackle these ranking problems. Despite their empirical success, most existing LTR models are not built to be robust to errors in labeling or annotation, distributional data shift, or adversarial data perturbations. To fill this gap, we develop four LTR frameworks that are robust to various types of perturbations. First, Pairwise Elastic Net Regression Ranking (PENRR) is an elastic-net-based regression method for drug sensitivity prediction. PENRR infers robust predictors of drug responses from patient genomic information. The special design of this model (comparing each drug with other drugs in the same cell line and comparing that drug with itself in other cell lines) significantly enhances the accuracy of the drug prediction model under limited data. This approach is also able to solve the problem of fitting on the insensitive drugs that is commonly encountered in regression-based models. Second, Regression-based Ranking by Pairwise Cluster Comparisons (RRPCC) is a ridge-regression-based method for ranking clusters of similar protein complex conformations generated by an underlying docking program (i.e., ClusPro). Rather than using regression to predict scores, which would equally penalize deviations for either low-quality and high-quality clusters, we seek to predict the difference of scores for any pair of clusters corresponding to the same complex. RRPCC combines these pairwise assessments to form a ranked list of clusters, from higher to lower quality. We apply RRPCC to clusters produced by the automated docking server ClusPro and, depending on the training/validation strategy, we show. improvement by 24%–100% in ranking acceptable or better quality clusters first, and by 15%–100% in ranking medium or better quality clusters first. Third, Distributionally Robust Multi-Output Regression Ranking (DRMRR) is a listwise LTR model that induces robustness into LTR problems using the Distributionally Robust Optimization framework. Contrasting to existing methods, the scoring function of DRMRR was designed as a multivariate mapping from a feature vector to a vector of deviation scores, which captures local context information and cross-document interactions. DRMRR employs ranking metrics (i.e., NDCG) in its output. Particularly, we used the notion of position deviation to define a vector of relevance score instead of a scalar one. We then adopted the DRO framework to minimize a worst-case expected multi-output loss function over a probabilistic ambiguity set that is defined by the Wasserstein metric. We also presented an equivalent convex reformulation of the DRO problem, which is shown to be tighter than the ones proposed by the previous studies. Fourth, Inversion Transformer-based Neural Ranking (ITNR) is a Transformer-based model to predict drug responses using RNAseq gene expression profiles, drug descriptors, and drug fingerprints. It utilizes a Context-Aware-Transformer architecture as its scoring function that ensures the modeling of inter-item dependencies. We also introduced a new loss function using the concept of Inversion and approximate permutation matrices. The accuracy and robustness of these LTR models are verified through three medical applications, namely cluster ranking in protein-protein docking, medical document retrieval, and drug response prediction

    MetaGL: Evaluation-Free Selection of Graph Learning Models via Meta-Learning

    Full text link
    Given a graph learning task, such as link prediction, on a new graph, how can we select the best method as well as its hyperparameters (collectively called a model) without having to train or evaluate any model on the new graph? Model selection for graph learning has been largely ad hoc. A typical approach has been to apply popular methods to new datasets, but this is often suboptimal. On the other hand, systematically comparing models on the new graph quickly becomes too costly, or even impractical. In this work, we develop the first meta-learning approach for evaluation-free graph learning model selection, called MetaGL, which utilizes the prior performances of existing methods on various benchmark graph datasets to automatically select an effective model for the new graph, without any model training or evaluations. To quantify similarities across a wide variety of graphs, we introduce specialized meta-graph features that capture the structural characteristics of a graph. Then we design G-M network, which represents the relations among graphs and models, and develop a graph-based meta-learner operating on this G-M network, which estimates the relevance of each model to different graphs. Extensive experiments show that using MetaGL to select a model for the new graph greatly outperforms several existing meta-learning techniques tailored for graph learning model selection (up to 47% better), while being extremely fast at test time (~1 sec).Comment: ICLR 202

    Neural Methods for Effective, Efficient, and Exposure-Aware Information Retrieval

    Get PDF
    Neural networks with deep architectures have demonstrated significant performance improvements in computer vision, speech recognition, and natural language processing. The challenges in information retrieval (IR), however, are different from these other application areas. A common form of IR involves ranking of documents--or short passages--in response to keyword-based queries. Effective IR systems must deal with query-document vocabulary mismatch problem, by modeling relationships between different query and document terms and how they indicate relevance. Models should also consider lexical matches when the query contains rare terms--such as a person's name or a product model number--not seen during training, and to avoid retrieving semantically related but irrelevant results. In many real-life IR tasks, the retrieval involves extremely large collections--such as the document index of a commercial Web search engine--containing billions of documents. Efficient IR methods should take advantage of specialized IR data structures, such as inverted index, to efficiently retrieve from large collections. Given an information need, the IR system also mediates how much exposure an information artifact receives by deciding whether it should be displayed, and where it should be positioned, among other results. Exposure-aware IR systems may optimize for additional objectives, besides relevance, such as parity of exposure for retrieved items and content publishers. In this thesis, we present novel neural architectures and methods motivated by the specific needs and challenges of IR tasks.Comment: PhD thesis, Univ College London (2020

    Entity-Oriented Search

    Get PDF
    This open access book covers all facets of entity-oriented search—where “search” can be interpreted in the broadest sense of information access—from a unified point of view, and provides a coherent and comprehensive overview of the state of the art. It represents the first synthesis of research in this broad and rapidly developing area. Selected topics are discussed in-depth, the goal being to establish fundamental techniques and methods as a basis for future research and development. Additional topics are treated at a survey level only, containing numerous pointers to the relevant literature. A roadmap for future research, based on open issues and challenges identified along the way, rounds out the book. The book is divided into three main parts, sandwiched between introductory and concluding chapters. The first two chapters introduce readers to the basic concepts, provide an overview of entity-oriented search tasks, and present the various types and sources of data that will be used throughout the book. Part I deals with the core task of entity ranking: given a textual query, possibly enriched with additional elements or structural hints, return a ranked list of entities. This core task is examined in a number of different variants, using both structured and unstructured data collections, and numerous query formulations. In turn, Part II is devoted to the role of entities in bridging unstructured and structured data. Part III explores how entities can enable search engines to understand the concepts, meaning, and intent behind the query that the user enters into the search box, and how they can provide rich and focused responses (as opposed to merely a list of documents)—a process known as semantic search. The final chapter concludes the book by discussing the limitations of current approaches, and suggesting directions for future research. Researchers and graduate students are the primary target audience of this book. A general background in information retrieval is sufficient to follow the material, including an understanding of basic probability and statistics concepts as well as a basic knowledge of machine learning concepts and supervised learning algorithms

    Towards an Architecture for Efficient Distributed Search of Multimodal Information

    Get PDF
    The creation of very large-scale multimedia search engines, with more than one billion images and videos, is a pressing need of digital societies where data is generated by multiple connected devices. Distributing search indexes in cloud environments is the inevitable solution to deal with the increasing scale of image and video collections. The distribution of such indexes in this setting raises multiple challenges such as the even partitioning of data space, load balancing across index nodes and the fusion of the results computed over multiple nodes. The main question behind this thesis is how to reduce and distribute the multimedia retrieval computational complexity? This thesis studies the extension of sparse hash inverted indexing to distributed settings. The main goal is to ensure that indexes are uniformly distributed across computing nodes while keeping similar documents on the same nodes. Load balancing is performed at both node and index level, to guarantee that the retrieval process is not delayed by nodes that have to inspect larger subsets of the index. Multimodal search requires the combination of the search results from individual modalities and document features. This thesis studies rank fusion techniques focused on reducing complexity by automatically selecting only the features that improve retrieval effectiveness. The achievements of this thesis span both distributed indexing and rank fusion research. Experiments across multiple datasets show that sparse hashes can be used to distribute documents and queries across index entries in a balanced and redundant manner across nodes. Rank fusion results show that is possible to reduce retrieval complexity and improve efficiency by searching only a subset of the feature indexes

    Learning to Rank: Online Learning, Statistical Theory and Applications.

    Full text link
    Learning to rank is a supervised machine learning problem, where the output space is the special structured space of emph{permutations}. Learning to rank has diverse application areas, spanning information retrieval, recommendation systems, computational biology and others. In this dissertation, we make contributions to some of the exciting directions of research in learning to rank. In the first part, we extend the classic, online perceptron algorithm for classification to learning to rank, giving a loss bound which is reminiscent of Novikoff's famous convergence theorem for classification. In the second part, we give strategies for learning ranking functions in an online setting, with a novel, feedback model, where feedback is restricted to labels of top ranked items. The second part of our work is divided into two sub-parts; one without side information and one with side information. In the third part, we provide novel generalization error bounds for algorithms applied to various Lipschitz and/or smooth ranking surrogates. In the last part, we apply ranking losses to learn policies for personalized advertisement recommendations, partially overcoming the problem of click sparsity. We conduct experiments on various simulated and commercial datasets, comparing our strategies with baseline strategies for online learning to rank and personalized advertisement recommendation.PhDStatisticsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133334/1/sougata_1.pd

    Preference Learning for Machine Translation

    Get PDF
    Automatic translation of natural language is still (as of 2017) a long-standing but unmet promise. While advancing at a fast rate, the underlying methods are still far from actually being able to reliably capture syntax or semantics of arbitrary utterances of natural language, way off transporting the encoded meaning into a second language. However, it is possible to build useful translating machines when the target domain is well known and the machine is able to learn and adapt efficiently and promptly from new inputs. This is possible thanks to efficient and effective machine learning methods which can be applied to automatic translation. In this work we present and evaluate methods for three distinct scenarios: a) We develop algorithms that can learn from very large amounts of data by exploiting pairwise preferences defined over competing translations, which can be used to make a machine translation system robust to arbitrary texts from varied sources, but also enable it to learn effectively to adapt to new domains of data; b) We describe a method that is able to efficiently learn external models which adhere to fine-grained preferences that are extracted from a constricted selection of translated material, e.g. for adapting to users or groups of users in a computer-aided translation scenario; c) We develop methods for two machine translation paradigms, neural- and traditional statistical machine translation, to directly adapt to user-defined preferences in an interactive post-editing scenario, learning precisely adapted machine translation systems. In all of these settings, we show that machine translation can be made significantly more useful by careful optimization via preference learning
    corecore