183,503 research outputs found

    Optimal target performance for cost-effective seismic design of bridges

    Get PDF
    A systematic approach is proposed for evaluating the cost-effectiveness of existing bridge design codes based on expected lifecycle cost. In the life cycle cost formulation, costs of construction, damage cost, road user cost, as well as discount cost over the design life of the bridge are considered. The optimal performance is selected on the basis of minimum life cycle cost. The performance of a typical two-span bridge designed according to a current code provision for different earthquake ground motion levels is predicted and optimal target performance is selected based on life cycle cost with different assumptions of user cost. It is demonstrated that life cycle cost should be considered in the design phase of new or retrofitted structures and the target performance significantly depends on the expected average daily traffic using the road

    Survey on Combinatorial Register Allocation and Instruction Scheduling

    Full text link
    Register allocation (mapping variables to processor registers or memory) and instruction scheduling (reordering instructions to increase instruction-level parallelism) are essential tasks for generating efficient assembly code in a compiler. In the last three decades, combinatorial optimization has emerged as an alternative to traditional, heuristic algorithms for these two tasks. Combinatorial optimization approaches can deliver optimal solutions according to a model, can precisely capture trade-offs between conflicting decisions, and are more flexible at the expense of increased compilation time. This paper provides an exhaustive literature review and a classification of combinatorial optimization approaches to register allocation and instruction scheduling, with a focus on the techniques that are most applied in this context: integer programming, constraint programming, partitioned Boolean quadratic programming, and enumeration. Researchers in compilers and combinatorial optimization can benefit from identifying developments, trends, and challenges in the area; compiler practitioners may discern opportunities and grasp the potential benefit of applying combinatorial optimization

    Trajectory Optimization Through Contacts and Automatic Gait Discovery for Quadrupeds

    Full text link
    In this work we present a trajectory Optimization framework for whole-body motion planning through contacts. We demonstrate how the proposed approach can be applied to automatically discover different gaits and dynamic motions on a quadruped robot. In contrast to most previous methods, we do not pre-specify contact switches, timings, points or gait patterns, but they are a direct outcome of the optimization. Furthermore, we optimize over the entire dynamics of the robot, which enables the optimizer to fully leverage the capabilities of the robot. To illustrate the spectrum of achievable motions, here we show eight different tasks, which would require very different control structures when solved with state-of-the-art methods. Using our trajectory Optimization approach, we are solving each task with a simple, high level cost function and without any changes in the control structure. Furthermore, we fully integrated our approach with the robot's control and estimation framework such that optimization can be run online. By demonstrating a rough manipulation task with multiple dynamic contact switches, we exemplarily show how optimized trajectories and control inputs can be directly applied to hardware.Comment: Video: https://youtu.be/sILuqJBsyK

    A toolset for the analysis and optimization of motion estimation algorithms and processors

    Get PDF

    An Extensible Benchmarking Infrastructure for Motion Planning Algorithms

    Full text link
    Sampling-based planning algorithms are the most common probabilistically complete algorithms and are widely used on many robot platforms. Within this class of algorithms, many variants have been proposed over the last 20 years, yet there is still no characterization of which algorithms are well-suited for which classes of problems. This has motivated us to develop a benchmarking infrastructure for motion planning algorithms. It consists of three main components. First, we have created an extensive benchmarking software framework that is included with the Open Motion Planning Library (OMPL), a C++ library that contains implementations of many sampling-based algorithms. Second, we have defined extensible formats for storing benchmark results. The formats are fairly straightforward so that other planning libraries could easily produce compatible output. Finally, we have created an interactive, versatile visualization tool for compact presentation of collected benchmark data. The tool and underlying database facilitate the analysis of performance across benchmark problems and planners.Comment: Submitted to IEEE Robotics & Automation Magazine (Special Issue on Replicable and Measurable Robotics Research), 201
    corecore