
Department of
Computing Science

Compiler Architecture using

a Portable Intermediate

Language

Fermı́n Javier Reig Galilea

Submitted for the degree of Doctor of
Philosophy in Computing Science at

the University of Glasgow

March 2002

c© 2002, Fermı́n Javier Reig Galilea

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Glasgow Theses Service

https://core.ac.uk/display/371049?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

The back end of a compiler performs machine-dependent tasks and low-
level optimisations that are laborious to implement and difficult to debug.
In addition, in languages that require run-time services such as garbage
collection, the back end must interface with the run-time system to provide
those services. The net result is that building a compiler back end entails a
high implementation cost.

In this dissertation I describe reusable code generation infrastructure
that enables the construction of a complete programming language imple-
mentation (compiler and run-time system) with reduced effort. The infras-
tructure consists of a portable intermediate language, a compiler for this
language and a low-level run-time system. I provide an implementation of
this system and I show that it can support a variety of source programming
languages, it reduces the overall effort required to implement a program-
ming language, it can capture and retain information necessary to support
run-time services and optimisations, and it produces efficient code.

i

Acknowledgements

I am very grateful to my supervisor David Watt for his support and en-
couragement throughout this time. His thorough reviews and insightful
comments have been essential to turn the drafts of my chapters into a dis-
sertation.

Thanks to my second supervisor Peter Dickman, who provided additional
guidance and helped me to clarify and give structure to my ideas. Simon
Peyton Jones supervised me during my first months in Glasgow and has
provided kind advice on several occasions afterwards. My thesis examiners
Richard Jones and Tony Printezis provided many suggestions that improved
the dissertation.

Many thanks to Lal George, David Hanson and Chris Fraser for giving
me the opportunity to work with them during two summer internships. I
have been fortunate to learn from their vast experience.

Lal George and Allen Leung are the authors of MLRISC, an excellent
software package on which I have based my compiler. They provided timely
improvements to MLRISC when I needed them.

Special thanks go to my parents for their unconditional support always.
And to Johanna, for sharing so many things.

I have been supported financially by a doctoral scholarship from Depar-
tamento de Educación y Cultura del Gobierno de Navarra.

This dissertation has been written using the TEX document preparation
system, the LATEX macro package and a handful of other macro packages.
All of these have been contributed by their authors free of charge. I am
grateful to them.

ii

Contents

Contents iii

List of Figures vi

List of Tables viii

1 Introduction 1
1.1 The Functions of a Code Generator 2
1.2 Reusable Code Generation . 3
1.3 Requirements for Reusability 4
1.4 UNCOLs . 7
1.5 Outline of Dissertation . 8
1.6 Terminology . 9

2 Compiler Architecture Using C-- 10
2.1 Compiled Programming Languages 10
2.2 An Overview of C-- . 12
2.3 Types . 12
2.4 Functions . 13

2.4.1 Expressions . 13
2.4.2 Local Memory . 14
2.4.3 Memory Access . 15
2.4.4 Calling Conventions 15

2.5 Static Data . 15
2.6 Continuations . 16
2.7 An Example . 17

3 High-level Annotations for Intermediate Languages 19
3.1 Annotations for Low-Level Optimisations 21

3.1.1 Control Flow of Function Calls 21
3.1.2 Control Flow due to Exceptions 23
3.1.3 Branch Prediction . 25
3.1.4 Data Prefetching . 26
3.1.5 Pointer Maps for Accurate Garbage Collection 27

iii

CONTENTS iv

3.1.6 Memory Disambiguation 28
3.1.7 Side Effects of Functions 29

3.2 Related Work . 31

4 C-- Support for Run-time Services 33
4.1 Introduction . 34
4.2 Compiler Support for Run-Time Services 35

4.2.1 Accurate Garbage Collection 35
4.2.2 Exception Handling 36
4.2.3 Static Information to Support the Run-Time System . 36

4.3 The C-- Run-Time Interface 37
4.3.1 Determining Which C-- Variables are Roots 39
4.3.2 Implementing the C-- run-time interface 42

4.4 C-- Run-Time Support for Generational Stack Collection . . 44
4.5 Compile-Time Pointer Maps 45

4.5.1 Support for Debugging 49
4.6 The Problem of Language Interoperability 50

4.6.1 Foreign Function Interfaces and Stacks 50
4.6.2 Foreign Calls and Garbage Collection 51
4.6.3 Foreign Calls and Exception Handling 51

4.7 C-- Run-Time Support for Foreign Calls 52
4.7.1 Walking a Mixed Stack 53
4.7.2 Saving the C-- State 56

4.8 Support for Multi-Threaded Languages 59
4.9 Related Work . 60

5 Compiling C-- 61
5.1 Compiling C-- . 61

5.1.1 The C-- Calling Convention and Tail Call Optimisation 62
5.1.2 C-- Continuations . 65
5.1.3 Run-time Representation of C-- Continuations 67
5.1.4 Reserved Machine Registers 71
5.1.5 A Better Implementation 73

5.2 Optimising C-- . 74
5.2.1 Optimising Parameter Passing 75
5.2.2 Optimising Register Parameters of Known Functions . 75
5.2.3 Optimising Overflow Parameters of Known Functions 77
5.2.4 Tail-Recursion Optimisation 77
5.2.5 Conditional Moves . 80

6 Targeting C-- 82
6.1 Translating C to C-- . 82

6.1.1 Indirect gotos and Labels as Values 83
6.1.2 In-Memory Locals . 84

CONTENTS v

6.1.3 Tail Call Optimisation in C 86
6.1.4 Unsigned Integer Loads in C-- 88
6.1.5 Unsupported Features of C 90

6.2 Translating Caml to C-- . 90
6.2.1 Translating LLFL into C-- 91
6.2.2 Exceptions and Exception Handling in Caml 96
6.2.3 Caml Exceptions in C-- 98

6.3 Generating Target-dependent C-- 101
6.4 Targeting the Caml RTS to C-- 105

7 Evaluation 107
7.1 Compiler Construction Using C-- 107
7.2 Performance Evaluation . 108

7.2.1 C Benchmarks . 108
7.2.2 Caml Benchmarks . 109

7.3 Summary . 118

8 Proposed Extensions to C-- 119
8.1 The volatile Type Qualifier 120
8.2 C-- Extensions for Performance 121

9 Conclusions 123
9.1 Summary of Contributions . 123
9.2 Directions for Future Research 125

9.2.1 Debugging . 125
9.2.2 Heap-allocated Activations 126
9.2.3 Type Systems to Express Program Properties 126
9.2.4 Annotations for Mobile Intermediate Representations 127

A Syntax of C-- 128

B Comparing C-- to MLRISC 130

Bibliography 136

List of Figures

2.1 Language implementation consisting of a compiler and a run-
time system. 11

2.2 Language implementation using a reusable back end and a
low-level run-time system. 11

3.1 Effect of a “does not return” annotation on the CFG. 22
3.2 Effect of an “always raises” annotation on the CFG. 24
3.3 Code for a stack-based target. 31

4.1 Algorithm for scanning the stack in an accurate garbage col-
lector. 34

4.2 Algorithm of a simple exception dispatcher. 35
4.3 A simple stack scanning function, targeted to C--. 40
4.4 Using front-end gc-descriptors to determine which C-- vari-

ables are roots. 41
4.5 Architecture of compiler and RTS using the C-- interface. . . 42
4.6 During traversal of the stack, the local variables of a sus-

pended activation are accessible via the activation handle. . . 44
4.7 Generational stack collection targeted to C--. 46
4.8 Garbage collector targeted to C-- using unified pointer maps. 48
4.9 Stack limits of a sequence of foreign activations. 54
4.10 Code to walk foreign activations. 55
4.11 A stack containing foreign activations and its associated saved

contexts stack. 56
4.12 Traversing a stack that contains foreign activations. 57

5.1 An efficient run-time representation of exception handlers. . . 67
5.2 Run-time representation of C-- continuations in an activation

of function f. 69
5.3 Continuation k cannot be invoked in the true branch. 71

6.1 A C switch statement translated to C-- using indirect gotos. 85
6.2 Translation of volatile variables into C--. 87
6.3 C example that reads signed and unsigned variables. 89

vi

LIST OF FIGURES vii

6.4 Stack of Caml handlers implemented as a linked list in the
call stack. 97

6.5 Stack of C-- continuations implemented as a linked list in the
call stack. 99

6.6 C-- code for raise. 100
6.7 Exception handling code in C--. 102

7.1 Normalised execution times of C benchmarks. 111
7.2 Code of exceptions benchmark. 112
7.3 Normalised execution times of Caml benchmarks. 113

B.1 C code. 132
B.2 C-- code for the C program. 133
B.3 MLRISC code for the C program. 135

List of Tables

6.1 Static frequency of tail calls in C. 86

7.1 Size of the back end. 108
7.2 Description of C benchmarks. 109
7.3 Execution times of C benchmarks (hours:minutes:seconds). . 110
7.4 Description of Caml benchmarks. 110
7.5 Execution times of Caml benchmarks (seconds). 112
7.6 Instruction counts of exceptions in an Alpha. 118

viii

Chapter 1

Introduction

Building a state-of-the-art code generator that targets several architectures
entails a high implementation effort. Optimising code generators are large,
complex systems that are laborious to write and difficult to debug. For
this reason, the reuse of code generation technology is a perpetual goal of
compiler implementors. Fortunately, there is much potential for code reuse
in a code generator. Large portions are independent of the source language
being translated and independent of the instruction set architecture being
targeted.

In this dissertation I describe a generic code generation infrastructure
that can be used to build a complete programming language implementation
(compiler and run-time system) with substantially less work.

The infrastructure consists of a portable compiler intermediate language
(C--), a compiler for this language and a low-level run-time system. I have
implemented this system and I have evaluated it with compilers for C and
the functional language Caml (Leroy et al. 2002). I have retrofitted a C
compiler to target the intermediate language; and I have retrofitted a com-
piler for Caml and its run-time system to target the intermediate language
and the low-level run-time system, respectively. These are the first compiler
implementations to make use of the C-- infrastructure.

I show that this code generation infrastructure (1) can be used to compile
very diverse source programming languages; (2) reduces the overall effort
required to implement a programming language; (3) can capture and retain
high-level information useful for low-level optimisations; (4) can capture
and retain high-level information necessary to support run-time services
such as garbage collection and exception handling; (5) does not increase the

1

CHAPTER 1. INTRODUCTION 2

complexity of the compiler’s front end, the run-time system, or the interface
between the two; and (6) produces code competitive to that generated by
monolithic compilers.

In the following sections I briefly describe what code generators do, what
it means for a code generator to be reusable, and what is needed to achieve
reusability.

1.1 The Functions of a Code Generator

At the very least, the code generator of a compiler translates the interme-
diate representation of the source program to the target instruction set and
emits these instructions as machine code or as assembly language.

In practice a code generator also performs a series of optimisations on
the program with the goal of reducing its execution time, memory usage, or
both. A list of such optimisations includes the following (Muchnick 1997;
Bacon et al. 1994):

• constant folding

• algebraic simplifications

• unreachable code elimination

• elimination of branch chains

• alignment of branch targets

• dead code elimination

• common subexpression elimination (local and across basic blocks)

• copy propagation

• constant propagation

• partial redundancy elimination

• tail-call optimisation and tail-recursion elimination

• induction variable optimisations

• strength reduction

CHAPTER 1. INTRODUCTION 3

• loop reorganisations (unrolling, pipelining, blocking, interchange)

• advanced instruction selection (use of SIMD instructions if supported
by the target)

• instruction scheduling (within basic blocks, trace scheduling across
basic blocks)

• inlining of function calls

• register allocation

• code and data prefetching

• code and data placement (to avoid or reduce cache conflicts)

• peephole optimisations

It is worth pointing out that even if only a fraction of these optimisations
are provided by a particular code generator, the implementation effort may
still be substantial. For instance, a sophisticated graph-colouring register
allocator performs liveness analysis, live range identification, interference-
graph construction and simplification, coalescing of live ranges, calculation
of spill costs, live range splitting, and insertion of spill code.

In addition to generating and optimising code, in some language imple-
mentations, it is the task of the code generator to compute and emit infor-
mation that will be consulted by the run-time system during program execu-
tion. This includes pointer maps for garbage collection (Diwan et al. 1992)
and program counter tables for exception handling (Koenig and Stroustrup
1990; Chase 1994).

In summary, there is a substantial implementation investment behind
a state-of-the-art code generator. Reuse of this infrastructure substantially
reduces the costs of building compilers.

1.2 Reusable Code Generation

The construction of a reusable code generator presents a number of chal-
lenges. First, the code generator should be generic, meaning that it can be
easily targeted from a variety of source programming languages, regardless of
the programming paradigm (procedural, functional, logic, object-oriented).

CHAPTER 1. INTRODUCTION 4

Second, it should be possible for the front end to communicate high-level in-
formation that the code generator might find useful to generate better code.
Third, the division of the compiler into front end and reusable code generator
should not hinder the implementation of high-level run-time services such
as automatic memory reclamation, exception handling, and others. Fourth,
the interface that the code generator presents should not be one that forces
the front end to be implemented in a specific programming language. Fifth,
the code generator should provide all the optimisations that advanced com-
pilers routinely implement. Finally, it should be available for a reasonable
number of target instruction set architectures.

A number of code generators have been developed that meet some of
the goals stated above. MLRISC (George and Leung 2000), VPO (Benitez
and Davidson 1988) and the back end of the GNU Compiler Collection
(GCC) (Stallman 2001) are all examples of freely-available, reusable code
generators. But none of these systems provides all the capabilities that
are demanded. For instance, if one uses VPO or GCC, it is not possible
to generate the information needed to implement some run-time services
efficiently. Or if MLRISC is used, the front end must be written in the SML
language, since this is the only interface provided by MLRISC.

1.3 Requirements for Reusability

Reusable code generators must be portable and generic, and must provide
support to implement run-time services efficiently.

Portability

Compilers represent programs during translation using intermediate repre-
sentations (IRs). An IR is thus the interface that a code generator exports
to its client front ends. In order for a code generator to be reusable, its
interface IR needs to provide abstractions that hide the details of the tar-
get: instruction set architecture, number of registers available, etc. Target-
independence of the IR ensures portability of the client front ends, since they
need not be changed when the code generator is ported to a new target.

CHAPTER 1. INTRODUCTION 5

Genericness

At the same time, the IR must be generic, so that it can encode the con-
structs of different programming languages. The translation into the generic
IR must occur without loss of semantic information. This is essential to guar-
antee correctness of the generated code, but is also important to be able to
generate efficient code. In order to be considered truly generic, an IR must
not impose any particular programming model on its clients. JVM1 code
(Lindholm and Yellin 1999) has been used as the target IR in implementa-
tions of languages other than Java, but only by using unnatural encodings of
the source constructs into objects, methods and other constructs of the JVM.
Such cumbersome translations have resulted in disappointing performance
(Benton et al. 1998; Bothner 1998; Wakeling 1999; Schinz and Odersky
2001). Unfortunately, performance is not the only stumbling block: some-
times the semantic model of the source language cannot be accommodated
to the constructs of the JVM language (Kahrs 2001). Thus, while JVM code
can serve as a portable intermediate representation (in the sense that the
Java virtual machine has been ported to many different systems), it is not
generic (in the sense that it does not support well programming models too
different from that of Java).

The C programming language has been used as a portable assembly lan-
guage in compilers for Prolog (Codognet and Diaz 1995), Mercury (Hender-
son et al. 1995), Scheme (Bartlett 1989), SML (Tarditi et al. 1992), Erlang
(Hausman 1994), APL (Otto 2001) and many more. C provides portability
and reasonable performance, since good C compilers exist for virtually every
existing architecture. Also, since C is a fairly low-level language, it is pos-
sible to map into it most of the high-level constructs of modern languages.
In addition, the GCC compiler supports extensions to ANSI C (indirect
branches and global variables in registers) that enable better code to be
generated. Unfortunately, some language features cannot be implemented
efficiently in C (Peyton Jones et al. 1999). For instance, in most cases it
is impossible for a C compiler to perform tail-call optimisation, which is an
essential optimisation for declarative languages. Also, C does not have ex-
ceptions itself, and provides only non-local jumps to encode them, but with
a performance cost compared to native implementations.

1Java Virtual Machine.

CHAPTER 1. INTRODUCTION 6

Run-Time Support

In addition to translating the source code into target machine code, many
programming language implementations include a run-time system. The
run-time system consists of support code necessary to implement certain
features provided by the programming language. For example, in languages
that support concurrency, the thread scheduler and the code that imple-
ments the synchronisation primitives supported by the language are part of
the run-time system. In languages with automatic memory reclamation, the
run-time system includes a garbage collector (Jones 1996).

Some run-time services require information about the program that is
only available during compilation. For instance, a garbage collector must
find, and perhaps modify, all pointers to dynamically-allocated data. The
garbage collector needs to identify unambiguously the location and liveness
of all such pointers. It is the compiler that knows which variables contain
pointers. It is also the compiler that knows about the liveness of variables
and allocates them to specific locations (registers and memory). This infor-
mation must be made available to the garbage collector. Hence, the compiler
and run-time system must cooperate to provide some services. This coop-
eration takes the form of data that is emitted in addition to code as part of
compilation and that is consulted by the run-time system during execution
of the program. The mechanism to exchange this data has to be designed
carefully in order to incur the minimum possible cost in execution time and
space.

One difficulty is that this data may depend both on information discov-
ered early, by the front end (for instance, the type of a variable), and also on
information that is computed late, by the code generator (for instance, what
register or memory location holds the value of a variable). If we want to
build our compiler using an off-the-shelf code generator, the front end and
the code generator need to interface separately with the run-time system.
This separation complicates the interface between compiler and run-time
system.

One possible solution is that the code generator supplies its own im-
plementation of the run-time services. This is the approach used by front
ends that use JVM code as a portable intermediate language. Any existing
implementation of the Java virtual machine can run the generated code and
provide services like garbage collection and exception handling. The prob-

CHAPTER 1. INTRODUCTION 7

lem with this approach is that there are many possible implementations of
run-time services, each with its own engineering tradeoffs. For instance,
Wakeling (1999) reports that the cost of memory allocation in Haskell pro-
grams translated to JVM code is an order of magnitude higher than in an
interpreter for Haskell. Functional languages allocate memory at higher
rates (Diwan et al. (1995) report that SML programs on average allocate
one word per 4–10 machine instructions), and Java implementations are
typically not optimised for this case.

Language implementations that use C as a target language cannot be
efficient and use accurate garbage collection at the same time. A widely-
used solution is conservative garbage collection (Boehm and Weiser 1988).2

This approach can often deliver good performance, at the cost of increased
space consumption (Wentworth 1990; Agesen et al. 1998), which can be
unbounded in the worst case (Boehm 2002). In addition, some compiler op-
timisations can “hide” actual pointers from a conservative collector (Diwan
et al. 1992), leading to program failure. In most cases, the only solution is
to disable optimisations for the particular program that fails. A recently-
proposed alternative is to implement (in the generated C code) a shadow
stack that holds all the pointers (Henderson 2002). This makes accurate
collection possible, but it inhibits certain compiler optimisations and it has
a cost in performance of the resulting code.

1.4 UNCOLs

The idea of using a universal IR for multiple compilers dates to the late
1950s, when the term UNCOL (UNiversal Computer Oriented Language)
was coined (Conway 1958; Strong et al. 1958; Steel 1961). In the early 1990’s
the ANDF initiative (Architectural Neutral Distribution Format) (Benitez
et al. 1991) was launched with the intention of providing an intermediate
language to encode the constructs of C (and later Ada). However, neither
project has met its initial goals. Ironically, the language that has come
nearest to succeeding as an UNCOL has been C, not so much because it is
well suited to the task, but because C compilers that generate efficient code
are available for most existing architectures.

2A conservative collector considers all values that appear to be pointers as pointers.
One disadvantage of conservative collection is that it is not safe to relocate all objects,
which limits the choice of garbage collection algorithms (Jones 1996).

CHAPTER 1. INTRODUCTION 8

1.5 Outline of Dissertation

The remainder of this dissertation consists of the following chapters.

Chapter 2: Compiler Architecture Using C--. This contains a
brief description of the compiler architecture and introduces the C--

intermediate language.

Chapter 3: High-level Annotations for Intermediate Languages.
To obtain high-quality object code, it is important that the front end of
the compiler shares with the code generator any high-level information
about the program that can be used to perform aggressive low-level op-
timisations. In this chapter, I identify a number of high-level program
properties that can be easily expressed in the intermediate language of
a reusable code generator. The focus is on static program knowledge
that is readily available at the front end, but can be expensive or even
impossible for the code generator to rediscover.

Chapter 4: C-- Support for Run-time Services. A low-level
run-time system for C-- was first proposed by Peyton Jones et al.
(1999). Here I shed light on some limitations of that system. These
limitations hinder the implementation of certain services of the high-
level run-time system, such as generational stack collection (Cheng
et al. 1998), stack walking in the presence of foreign calls and callbacks,
and efficient identification of pointers for accurate garbage collection.
I propose changes and extensions to the C-- run-time system so that
these services can be implemented efficiently.

Chapter 5: Compiling C--. This describes the salient aspects of
compiling C--, including tail-call optimisation, representing C-- con-
tinuations, and optimised parameter passing. A novel method of im-
plementing dedicated machine registers is also proposed.

Chapter 6: Targeting C--. This describes the translation of C and
Caml into C--. To generate efficient code for C’s switch statement,
I extend the C-- language with indirect branches, which are missing
from the original C-- proposal. I show that the translation of Caml
exceptions to C-- results in code less efficient than the Caml compiler
generates. I describe the changes needed in the Caml run-time system
to use C--.

CHAPTER 1. INTRODUCTION 9

Chapter 7: Evaluation. This presents an evaluation of the C com-
piler and the Caml compiler that were re-engineered to use the C--

code generation infrastructure.

Chapter 8: Proposed Extensions to C--. This suggests further
extensions to the syntax of C--. The first extension is necessary to
express contexts in which it is illegal to perform certain low-level op-
timisations. The remaining extensions are useful to generate more
efficient machine code.

Chapter 9: Conclusions. This summarises the dissertation and
suggests directions for further work.

1.6 Terminology

In this dissertation I use the term front end to refer to those parts of a
compiler that are dependent on the source language. The front end includes
the lexer, the parser, the static analyser (scope and type checker) and also
all language-dependent optimisations (for instance method dispatch opti-
misations in object-oriented languages). The rest of the compiler will be
referred to as the back end or the code generator, interchangeably. The
optimisations performed here are independent of the source language, but
may be target-specific (for instance peephole optimisations specific to one
instruction set).

Chapter 2

Compiler Architecture Using

C--

This chapter provides a bird’s-eye view of the compiler architecture proposed
in this dissertation. It also contains a brief introduction to C--, excluding
its low-level run-time system, which is described in Chapter 4.

2.1 Compiled Programming Languages

Figure 2.1 shows a conceptual view of the implementation of a compiled
programming language. (In the figure, dashed arrows depict interactions
that occur at run-time.) The language implementor provides a compiler and
a run-time system. The compiler generates object code and data, which are
linked together with the run-time system to form the executable program.
The generated code requests services from the run-time system, such as
thread creation, synchronisation and garbage collection. To provide some of
these services the run-time system needs to consult the data emitted by the
compiler.

In the compiler architecture described in this dissertation, the front end
and the run-time system use the services of a reusable code generation infras-
tructure. This infrastructure consists of a back end and a low-level run-time
system. The interface between the front end and the back end is C--, a
generic intermediate language. The run-time system accesses the data emit-
ted by the back end through the low-level run-time system. Figure 2.2 shows
a conceptual view of this architecture.

10

CHAPTER 2. COMPILER ARCHITECTURE USING C-- 11

compiler

source

dataobject
code

RTS

Figure 2.1: Language implementation consisting of a compiler and a run-
time system.

object
code

IL

data

back end

LRTS

RTS

source

IL

front end

Figure 2.2: Language implementation using a reusable back end and a low-
level run-time system.

CHAPTER 2. COMPILER ARCHITECTURE USING C-- 12

Terminology

In the remainder of the dissertation, I use the terms low-level run-time sys-
tem and C-- run-time system interchangeably. To avoid ambiguity, instead
of run-time system I use the more precise term front-end run-time system
in some places.

2.2 An Overview of C--

An initial proposal for C-- appeared in (Peyton Jones et al. 1997). The
version used in this dissertation is essentially the one described in (Pey-
ton Jones et al. 1999). Additional syntax is introduced in later chapters, as
needed. For a complete definition of the C-- language, readers are invited
to consult the C-- reference manual (Ramsey et al. 2001).

C-- is a portable intermediate language intended to be independent of
both source programming language and target architecture. Some of C--

is similar to other compiler intermediate languages, for example the ones
described by Muchnick (1997) and Fraser and Hanson (1995).

C-- is not a “write-once, run-anywhere” intermediate language, like JVM
code (Lindholm and Yellin 1999). It is neither a language-specific, target-
independent code format, like ANDF (Benitez et al. 1991) or slim binaries
(Franz and Kistler 1997). These systems are abstractions of high-level lan-
guages, while C-- provides abstractions of hardware. For instance, C-- vari-
ables are an abstraction of machine registers; they hide the actual number
and any conventions on their use. Similarly, memory loads and stores in C--

hide the particular addressing modes available in the machine.
C-- hides most, but not all, of the target machine from the front end;

front ends must be aware of properties like the size of the native data-pointer
and code-pointer types, alignment requirements of the target machine, etc.
For example, a C-- program generated for a machine with 64-bit addresses
would be different from a C-- program generated for a machine where ad-
dresses are 32 bits.

2.3 Types

C-- supports a bare minimum of types: bits types (bits8, bits16, bits32,
bits64) and floating-point types (float32, float64). These types encode

CHAPTER 2. COMPILER ARCHITECTURE USING C-- 13

only the size and the kind of register (general-purpose or floating-point)
required for a C-- value.

By intent, this minimalistic type system does not preserve high-level
type information: its sole purpose is to direct the C-- compiler’s mapping
of C-- variables to registers or memory. A front end uses the bits types
to represent a number of high-level types, such as booleans, characters,
numbers, pointers, bit vectors, etc.

Not all C-- types are available on all machines. For instance, a program
that uses bits64 may be rejected by a C-- compiler that targets a machine
that supports only 32-bit values and operations.

2.4 Functions

C-- has parameterised functions. Each function has a fixed number of pa-
rameters and a fixed number of results. Each parameter and each result has
a fixed type. Note that multiple results are supported.

A function body consists of declarations and statements. Declarations
are local variables and local memory allocation. Statements include labels,
assignments, memory writes, conditionals, gotos, calls, jumps (tail calls),
and returns.

There are no structured loop statements; iteration is implemented using
conditionals and gotos or conditionals and (tail) calls.

The number and types of actual parameters and results in a function call
must match those in the function definition. The function specified in a call
statement can be an arbitrary expression, not simply the statically-visible
name of a function.

Control does not return from a jump (tail call) and the caller’s activation
frame is deallocated before the call.

2.4.1 Expressions

C-- expressions yield values of bits and float types. Values may be as-
signed to variables, passed as parameters, returned as results, and fetched
from and stored in memory.

Expressions can be literals (integer, floating-point and character), names
(of variables, functions, code labels, data labels and continuations), memory
reads and primitive operators applied to one or more sub-expressions.

CHAPTER 2. COMPILER ARCHITECTURE USING C-- 14

The type of function names and code labels is the native code-pointer
type. The type of data labels is the native data-pointer type.

The list of primitive operators includes integer arithmetic (+, -, *, /, %),
floating-point arithmetic (+f, -f, *f, /f), bit manipulation (>>, <<, |, &, ^),
and logical (||, &&, ==, !=, <, <=, >, >=).

There are no separate signed and unsigned bits types. Instead, the
distinction is in the operators, like in most assembly languages. There are
unsigned integer operators for arithmetic (+u, -u, *u, /u, %u), comparison
(==u, !=u, <u, <=u, >u, >=u) and bit shift (>>u).

There is no “address-of” operator. However, global and local memory
can be allocated explicitly and labelled.

2.4.2 Local Memory

To handle high-level values that cannot be represented using C--’s primitive
types, like records and arrays, memory can be allocated locally to a function.
This declaration

stackdata {

a_record:

bits8;

float64[2];

}

reserves enough memory to hold a bits8 and two float64s; it also declares
a label that names the address of the bits8. The label itself is an expression
of the native data-pointer type.

An explicit align directive provides alignment where that is required.
For instance:

stackdata {

a_record:

bits8;

align 8;

float64[2];

}

Here, enough padding is allocated after the bits8 to guarantee that the
first float64 is aligned to a 64 bit boundary (8 bytes).

CHAPTER 2. COMPILER ARCHITECTURE USING C-- 15

2.4.3 Memory Access

All memory access is explicit, including the type and size of the value being
fetched or stored. For example, this memory write statement

bits8[a_record] = 1;

stores the literal 1 into the 8-bit memory cell referenced by the label a_record.
The same syntax is used for load expressions:

y = float64[a_record+1];

This statement loads a 64-bit float from the address referenced by the
expression a_record+1 and assigns that value to the local variable y.

2.4.4 Calling Conventions

The calling convention for C-- procedures is entirely a matter for the C-- im-
plementation. In particular, C-- need not use the native calling conventions
to pass parameters and return results.

The programmer can ask for a function to use C’s convention, so that
the function can be called from a C program. Similarly, external C functions
can be called from a C-- function by specifying the C calling convention at
the call site.

2.5 Static Data

Static memory can be allocated and initialised using constructs similar to
those found in assembly languages. For example:

section ".data" {

foo: bits32{10}; /* One bits32 initialised to 10 */

bits32{1,2}; /* Two initialised bits32s */

align 8;

float64[2]; /* Uninitialised array of 2 float64s */

bar: bits8 /* An uninitialised byte */

}

Here foo is a label that names the address of the first bits32; bar labels
the address of the last bits8. The labels are values of the native data-
pointer type; they can be assigned to variables of that type and even used

CHAPTER 2. COMPILER ARCHITECTURE USING C-- 16

in other static data initialisers. However, they are immutable values: they
cannot be assigned to.

2.6 Continuations

Ramsey and Peyton Jones (2000) have proposed C-- continuations as a
mechanism to support source-language exception handlers in C--. Below,
I explain C-- continuations briefly and refer the reader to (Ramsey and
Peyton Jones 2000) for the full details.

In the following code

f(bits64 x, float64 y) {

bits64 w;

...

return;

continuation k(w):

... statements mentioning x, y, w

}

k represents a control-flow target “with arguments”. k can be invoked from
within f, but continuations are most useful for non-local transfers of control,
such as exception handling.

The above code declares the name k as an r-value of the native data-
pointer type. (For instance, bits64 in a 64-bit architecture.) As an r-value,
k cannot be assigned to, but it can be passed to a procedure, used in the
right hand side of an assignment, or stored in memory.

The x in continuation k(x) is not a binding instance; the “formal
parameters” of a continuation must be variables of the enclosing function,
and therefore do not need type declarations.

There are different C-- constructs to invoke a continuation. They all
have the same denotational semantics, but different run-time costs. Here
I describe one of them. The statement cut to k(arguments); transfers
arguments to conventional locations,1 truncates the stack to k’s activation,
and sets the program counter to k’s program counter.

1These locations are determined by the C-- implementation.

CHAPTER 2. COMPILER ARCHITECTURE USING C-- 17

2.7 An Example

Finally, I show the code of a C-- function that uses most of the constructs
explained above. The function does not compute anything interesting; it is
merely a representative collection of C-- declarations and statements.

/* A function of two parameters. The types of a function’s

results are not explicitly stated */

f(bits8 x, float32 y, bits64 z){

/* A local variable declaration */

bits8 a;

/* The type system does not distinguish character and

integer literals. Both can be assigned to a bits8 */

a = 1;

a = ’a’;

bits32 b, c, d;

/* A call to a function that returns two results */

b,c = g(a * 10);

/* A conditional */

if(b < c) {

/* A tail call */

jump g(a * 10);

/* The next statement is never executed. Control does not

return from a jump */

a = 1;

}

/* A code label */

L:

if(b < 0) {

b = b + 1;

/* A call to a C function */

foreign "C" putchar(’a’);

/* A goto */

goto L;

}

/* A local memory declaration (an array) */

CHAPTER 2. COMPILER ARCHITECTURE USING C-- 18

stackdata {

tbl: bits32[10]; /* tbl is a data label */

}

/* Labels and function names are values. They can

be used in assignments, ... */

b = L;

b = tbl;

b = f;

/* and stored in memory */

bits32[tbl] = f;

bits32[tbl+4] = L;

bits32[tbl+8] = tbl;

/* Two indirect calls; they both call f */

c,d = b(x, y);

c,d = (bits32[tbl])(x, y);

if(c == d) {

/* Invoke the continuation stored in z */

cut to z(d);

}

/* f returns two results */

return(0, 1);

}

Chapter 3

High-level Annotations for

Intermediate Languages

Building a state-of-the-art code generator that targets several architectures
entails a high implementation effort. At the very least, the code generator
performs instruction selection, register allocation and emission of assembly
language or machine code. In practice we want the code generator also to
perform low-level optimisations (independent of the source language), such
as instruction scheduling, common subexpression elimination, loop-invariant
code hoisting, unreachable code elimination, copy propagation, peephole
optimisations, etc (Muchnick 1997; Bacon et al. 1994).

Because of the costs involved in implementing an optimising code gen-
erator, using an off-the-shelf, source-language-independent back end is very
appealing to compiler writers. MLRISC (George and Leung 2000), VPO
(Benitez and Davidson 1988) and the GCC back end (Stallman 2001) are
all examples of freely-available code generators.

Portable compiler target languages are also of interest to compiler writ-
ers. C has been used as a portable assembly language in compilers for Prolog,
Mercury, Scheme, SML, Haskell, APL, and many more. C ensures wide
portability and reasonable performance, since good C compilers exist for
virtually every target. More recently, JVM code has been gaining popularity
as a portable assembler for source languages other than Java. C-- is a
portable compiler target language that lacks the shortcomings of C and
JVM code as assembly languages (Peyton Jones et al. 1999).

To obtain high-quality object code, it is important that the compiler

19

CHAPTER 3. HIGH-LEVEL ANNOTATIONS 20

front end shares with the back end any high-level information that can be
used to perform aggressive low-level optimisations. Program information
that may be readily discovered by the front end can be expensive or even
impossible to rediscover in the back end. In monolithic compilers, the differ-
ent phases can share information about the source program via in-memory
data structures like symbol tables or program dependence graphs (Ferrante
et al. 1987), or via auxiliary files for cross-module optimisations.

When using an off-the-shelf back end, the only way to communicate pro-
gram properties to the code generator is via constructs in the intermediate
language. The portable back ends and intermediate languages mentioned
above provide little or no support to encode high-level semantic information.
For instance, with VPO the only information that can be passed to the code
generator is whatever can be expressed as register transfer lists.

In this chapter I identify high-level program properties that can be used
to perform aggressive back-end optimisations and/or reduce compilation
time. The focus is on static program knowledge that is readily available
at the front end, or that is the result of source-language-dependent analysis.

Here, we are interested in communicating static program properties to
language-independent back ends, regardless of the source language (which
may be procedural, object-oriented, or declarative).

Some compilers compute such high-level information and exploit it in
the back end, but generic intermediate languages and code generators de-
scribed in the literature do not provide ways of expressing most of the static
properties presented here.

My contribution is to identify an extensive set of such high-level prop-
erties and to propose suitable annotations for intermediate languages to
convey this information to the code generator.

The annotations are generic. They can be retrofitted to any existing in-
termediate language, not just C--. And they express language-independent
program properties. As such, they can be used in language implementations
of any paradigm (procedural, object-oriented, or declarative). I intend the
annotations as suggestions to designers of compiler intermediate languages.

CHAPTER 3. HIGH-LEVEL ANNOTATIONS 21

3.1 Annotations for Low-Level Optimisations

Compiler front ends for modern programming languages have abundant in-
formation about programs: types, side effects, control flow due to exceptions,
etc. I shall assume the following principle:

Do not throw away high-level information that can be exploited
for low-level optimisations and that the back end cannot (easily)
recover.

The annotations can be inferred by the compiler, but may also be pro-
vided by the programmer, in source languages that support them. In the
latter case, the compiler translates source-level annotations into annotations
of the intermediate language. Since the annotations are not specific to any
particular back end or intermediate language, I do not propose concrete
syntax.

3.1.1 Control Flow of Function Calls

Some functions do not return normally to their caller, but terminate the pro-
gram abruptly. The standard libraries of many programming languages in-
clude non-returning functions: exit, abort and longjmp in C; System.exit
in Java; error and System.exitWith in Haskell; etc. In GNU C, program-
mers can annotate functions as noreturn (Stallman 2001).

I propose that calls in the intermediate language can be annotated as
non-returning. The back end can use this information to remove unreachable
code and to perform better register allocation.

If a call to function F does not return, control will never reach the
instruction immediately following the call. In the back end, the unreachable
code elimination phase can delete all code that is dominated by the call. (A
statement S1 dominates statement S2 if every control path that reaches S2

passes through S1.)
Sometimes, calls to non-returning functions are not present in the source

program, but are generated by the front end during the translation to low-
level code. For instance, in a language with run-time error checking, the
front end emits an array-bounds check for every array access (except where
it can statically determine that the index is within bounds). An error check
typically contains a call to a non-returning error function. The low-level

CHAPTER 3. HIGH-LEVEL ANNOTATIONS 22

code may end up with many such calls that do not return. If they are
identified, the back end can perform better register allocation. For instance,
the following code fragment:

x = ...;

arr[index] = x;

may be expanded to this before code generation:

x = ...;

if (index > limit) {

array_bounds_error();

}

arr[index] = x;

Here, x cannot be allocated to a scratch (caller-saves) register, since this
register might be overwritten by the function array_bounds_error. The
register allocator can either spill x across the call, or allocate it to a callee-
saves register. However, if the call is annotated as non-returning, x can
be allocated to a scratch register, which is cheaper than spilling or using
a callee-saves register. (Using a callee-saves register in a function imposes
an indirect cost of saving it before its first definition and restoring it after
its last use.) Essentially, the annotation lets the back end transform the
control-flow graph (CFG) as shown in Figure 3.1. In the CFG 3.1(b), x is
not live across the call to array_bounds_error, and thus may be allocated
to a scratch register.

bounds_error()

x = ...

index > limit ?

... = x

(a) CFG when the call
does return.

EXIT

x = ...

index > limit ?

... = x

bounds_error()

(b) CFG when the call does
not return.

Figure 3.1: Effect of a “does not return” annotation on the CFG.

CHAPTER 3. HIGH-LEVEL ANNOTATIONS 23

3.1.2 Control Flow due to Exceptions

Exceptions are the preferred method for signalling error conditions in pro-
gramming languages that provide them. For instance, Java throws
IndexOutOfBoundsException for illegal array accesses, rather than termi-
nating the program.

In a control-flow graph representation of the program, a call that may
raise an exception terminates a basic block and creates a control-flow edge
to the handler as well as an edge to the next statement after the call. For
example, the Caml code in Figure 3.2 has the CFG of 3.2(b). Either f or g
could throw Exn1 or some other exception, but only Exn1 is caught in this
example. If any other exception were thrown by f or g, control would flow
to the EXIT pseudo-node of the CFG.

A portable intermediate language must have a way of conveying to the
back end the additional control-flow edges due to exceptions. Without them,
the code generator cannot build an accurate CFG. In C--, extra edges for
exceptions are expressed via the also annotation (Ramsey and Peyton Jones
2000). MLRISC has a similar construct. For the example above, in C-- the
calls f(z) and g(x) require an also annotation to the handler code.

Exception analysis (Leroy and Pessaux 2000; Yi and Ryu 2001) is use-
ful to diagnose programming errors due to possibly uncaught exceptions.
Interestingly, knowing that an exception is always thrown is useful informa-
tion for back-end optimisations. I propose an always annotation for these
situations. The annotation carries the control-flow successor of a call. In
C--, it would carry a continuation, in MLRISC it would carry a label, and
similarly in other intermediate languages. With always annotations, the
back end can simplify the CFG by removing edges that will never be taken
at run-time.

In the example, if the static analysis can prove that f(z) always throws
exception Exn1, the call can be annotated to give the CFG of 3.2(c). The
annotation makes it clear that the only possible successor to the call f(z) is
the exception handler. The code g(x) is now unreachable and the CFG can
be simplified to the one in 3.2(d). Moreover, if there are no other uses of
x, the definition let x = y + 10 is dead code and can be deleted. This, in
turn, might enable further dead code elimination if, for example, y is used
only in the definition of x.

On the other hand, if the static analysis can prove that f(z) always

CHAPTER 3. HIGH-LEVEL ANNOTATIONS 24

let x = y + 10 in
(try
f(z); g(x)

with Exn1 ->
handle_exn());

...

EXIT

let x = y + 10

g(x)

handle Exn1

f(z)

...

(b) Additional control-flow edges
due to exceptions.

EXIT

let x = y + 10

g(x)

handle Exn1

f(z)

...

(c) CFG when Exn1 is guaranteed to
be thrown.

let x = y + 10
f(z)
handle Exn1
...

(d) Optimised CFG when Exn1 is
guaranteed to be thrown.

Figure 3.2: Effect of an “always raises” annotation on the CFG.

CHAPTER 3. HIGH-LEVEL ANNOTATIONS 25

throws an exception different from Exn1, then the call can be annotated
as non-returning (as described in Section 3.1.1) to indicate that the only
successor is the EXIT pseudo-node. In this case, everything dominated by
the call in the original CFG is now unreachable.

All the front end has to do is annotate the statement f(z) during the
translation to intermediate code. Standard back-end optimisations like un-
reachable and dead code elimination take care of the rest.

3.1.3 Branch Prediction

Accurate branch prediction is extremely useful for several low-level optimisa-
tions. Code motion (Hailperin 1998), control and data speculation (Dulong
et al. 1999), global instruction scheduling (Young and Smith 1998), branch
alignment (Young et al. 1997) and good spill-cost estimates in register al-
location all benefit from accurate predictions of the outcome of conditional
branches.

The back end can make good guesses for some branches: backward loop
branches are likely to be taken, equality tests of floating point numbers
are likely to yield false, etc. (Ball and Larus (1993) apply simple local
heuristics to MIPS machine instructions and report average hit rates of
80%.) However, using knowledge of high-level properties of the program,
the compiler front end can make better predictions than the back end of the
outcome of some conditional branches. Below I list a few examples.

• The conditional tests of run-time error checks inserted by the front
end (arrays bounds checking, invalid argument type for an operation,
etc) are likely to select the no-error case.

• Pattern matching on lists is more likely to succeed on non-empty lists.

• If a program contains a non-exhaustive pattern match, the compiler
typically inserts a catch-all pattern with code that reports a pattern
match failure (by raising an exception, for instance). The conditional
branch to this code can be annotated by the front end as very likely
not to be taken.

• Dynamic allocation of objects in garbage-collected languages is trans-
lated in many implementations into low-level code similar to this:

CHAPTER 3. HIGH-LEVEL ANNOTATIONS 26

ptr = allocate_memory(size);

if (ptr > limit) { garbage_collect(); }

... use ptr ...

The comparison ptr > limit will fail in most cases.

• In GNU C, there is a primitive mechanism for the programmer to
provide branch prediction information (__builtin_expect).

These are a few of many possible examples. In all cases, the front end
has the advantage of high-level information to make better predictions than
the back end.

I propose that all constructs of the intermediate language that have
multiple control-flow successors accept (optional) probability annotations.
These constructs include conditional branches, if then else, switch, and
indirect jumps where the possible targets are listed. The extra control-flow
edges for exceptions introduced by also annotations (Section 3.1.2) can also
be annotated with branch probabilities.

3.1.4 Data Prefetching

Data prefetching aims to reduce the cost of cache misses by transferring
data from main memory to the processor before it is actually used in a com-
putation. Many current processors have some form of prefetch instruction.
Judicious placement of prefetch instructions can substantially reduce the ex-
ecution time of memory-bound programs. The compiler back end can insert
prefetch instructions during the instruction scheduling phase. Occasionally,
however, it is the front end and not the back end that knows best where it
can be profitable to insert a prefetch instruction. In these cases, a portable
intermediate language should be equipped with prefetch annotations.

In garbage-collected languages, writes to newly-allocated objects have
cache miss rates close to 100%. (On machines with write-validate caches,
write misses do not cause the processor to stall. But on machines with
fetch-on-write or write-around policies write misses are costly.) If we use
sequential allocation from a contiguous free space, prefetch annotations can
be inserted at allocation points (Appel 1998). Sometimes, high-level lan-
guage constructs can serve as prefetch hints: in C99 (ISO/IEC 1999), the
use of static in this function prototype

CHAPTER 3. HIGH-LEVEL ANNOTATIONS 27

float dot_product(float x[static 6], float y[static 6]);

is a promise to the compiler that x and y point to arrays containing at
least six floats. A C99 front end can emit a prefetch annotation before every
call to dot_product. Finally, programmers can provide prefetch hints at the
source level that are to be translated to prefetch annotations in the low-level
intermediate language.

3.1.5 Pointer Maps for Accurate Garbage Collection

To support accurate garbage collection, compilers emit pointer maps that
describe to the collector the location of local variables and temporaries that
contain pointers to heap-allocated objects. Pointer variables local to a func-
tion can be either in registers or in the activation frame of that function.
The compiler back end emits a pointer map for every program point where
a function can be suspended for garbage collection—gc-points. Allocation
points are gc-points, since an attempt to allocate when there is not enough
free memory can start a garbage collection cycle. Function calls are gc-points
as well, since the callee, or anything it calls, may try to allocate memory.

The total size of the pointer maps of a program varies from system to
system. The Java compiler described by Agesen et al. (1998) builds maps
that consume an average of 57% of the JVM code. Tarditi (2000) uses
a compact representation to achieve an average of 3.6% of code size for
optimised Java programs compiled to the x86. Compact representations
and compression schemes trade space consumption for increased decoding
time during garbage collection.

Not enough attention has been paid in the garbage collection literature
to the issue of unnecessary pointer maps. (To my knowledge, only Diwan
et al. (1992) mention it, but very briefly.) Many call sites are not gc-
points, because the callee (and anything it calls transitively) do not allocate
memory during its execution and therefore cannot trigger a garbage collec-
tion. The pointer maps for all these call sites will never be consulted by
the garbage collector, and therefore waste space in the object code. This
is highly undesirable for systems where memory is scarce, like PDAs or
hand-held computers.

The standard libraries of many garbage-collected languages contain a
wealth of functions that cannot start a garbage collection (mathematical
functions, character manipulation, traversal of data structures, I/O, inter-

CHAPTER 3. HIGH-LEVEL ANNOTATIONS 28

face to the operating system, etc). Calls to these functions can be annotated
by the front end, so that the back end does not emit pointer maps for them.

In a multithreaded environment, however, all calls are potentially gc-
points, even if the called function itself does not allocate: if an active thread
starts a collection, the collector has to scan the stack and registers of sus-
pended threads as well. Thus, in the presence of multithreading, pointer
maps are needed for all suspension points, and no call should be annotated
as not being a gc-point. However, even in languages that support threads,
many programs are single-threaded. If the compiler can determine this for
a program, then it is safe for the front end to annotate calls that are not
gc-points. (In some implementations of Java user-defined finalizers are ex-
ecuted by system threads. In this case, to assert that no allocation takes
place during a method invocation—i.e. that the call site is not a gc-point—,
the compiler needs to check that none of the finalizers allocate memory in
addition to checking that the program does not start multiple threads.)

3.1.6 Memory Disambiguation

Disambiguation of memory accesses is vital for several back-end optimi-
sations including redundant load/store elimination, scheduling for hiding
memory latency, load/store hoisting, and common subexpression elimina-
tion of load/stores. For instance, in the C code shown below:

*p = ...;

if(...) {

... use p ...

} else {

x = *q;

}

...

if there are no other uses of p, the statement *p = ...; can be hoisted into
the true branch, provided that p and q cannot point to the same memory
location.

I propose annotating loads, stores and calls with sets of tags that repre-
sent abstract memory regions. Two memory access operations may refer to
the same run-time location if their tag sets intersect. Calls take two sets of
tags, ref and mod, for locations that are read and written, respectively. If a

CHAPTER 3. HIGH-LEVEL ANNOTATIONS 29

function accesses only private memory, calls to it are annotated with empty
mod and ref sets. In the front end a number of analyses can be used to
generate mod/ref sets, including type-based disambiguation (Diwan et al.
1998), points-to analysis (Cheng and Hwu 2000), and algorithmic analysis
(Novack et al. 1995).

3.1.7 Side Effects of Functions

Some functions do not perform I/O operations, nor access the global vari-
ables of the program, nor raise exceptions. A pure function returns the
same result when called with the same arguments, independent of the call-
ing context. In Haskell, all functions that do not have monadic types are
pure. In ML, type and effect systems (Benton and Kennedy 2000) can as-
sign non-computational types to pure functions. The standard libraries of
many programming languages contain many pure functions (mathematical,
string manipulation, etc.). In GNU C, programmers can annotate function
declarations as pure or const. (The return value of a pure function may
depend on the values of its parameters and/or the values of global variables.
const is more strict: the result may not depend on the contents of global
variables.)

In the compiler back end, calls to pure functions are subject to dead
code elimination and code motion optimisations, like loop invariant hoist-
ing, common subexpression elimination, and partial redundancy elimination
(Briggs and Cooper 1994). For example, in the following code:

y = cos(z);

...

for (...) {

vec[i] = cos(x) + ...

}

if the call to the cosine function has no side effects and there are no uses
of y, then the assignment y = cos(); is dead code. Also, if the back end
can determine that x is loop-invariant, then the second call to cos can be
hoisted outside the loop.

I propose a no_effects annotation for function calls in the intermediate
language. As in GCC, it is useful to distinguish between accessing global
memory and performing other side effects like I/O or raising exceptions.

CHAPTER 3. HIGH-LEVEL ANNOTATIONS 30

Thus, no_effects is equivalent to GCC’s pure annotation. no_effects

does not say anything about memory reads and stores. This is communi-
cated to the back end with mod/ref lists instead. In the previous example,
the statement y = cos(z); cannot be deleted if it can modify a global loca-
tion that can be read later in the program. Calls to cos would be annotated
with both no_effects and empty mod/ref lists. (This is equivalent to a
const function using GCC’s annotations.) In this code:

for (...) {

... f(x) ...

vec[i] = g(x);

}

if x is loop-invariant, the call g(x) can be hoisted outside the loop if it is
annotated no_effects and it has no read/write conflicts of global memory
with f.

Notice that if a function may diverge for some of its inputs, deleting a call
that is dead code, or moving it across basic blocks, may change the program
result when compiled with optimisations turned on. This may not be allowed
by the source language definition. If this is the case, non-termination should
be considered a side effect and only calls that can be proven to terminate
should be annotated with no_effects.

Side-effects annotations and mod/ref annotations are also useful when
the target is a stack-based language. Consider the following code:1

x = f(a);

y = g(b);

z = h(y,5,x);

where f has no side effects, g might have side effects, and f and g don’t access
the same global variables. In the absence of any annotations, the back end
emits the code shown in Figure 3.3(a). With appropriate no_effects and
mod/ref annotations, the calls to f and g can be permuted to save the two
swap instructions, resulting in the code of Figure 3.3(b).

1This example was suggested to me by Andrew Kennedy.

CHAPTER 3. HIGH-LEVEL ANNOTATIONS 31

 call h

 swap

 push 5

 swap

 call g

 push b

 call f

 push a

(a) Unoptimised code.

 call h

 call f

 push a

 push 5

 call g

 push b

(b) Optimised code.

Figure 3.3: Code for a stack-based target.

3.2 Related Work

Annotations have been used successfully to assist back-end optimisations in
several compilers. Cho et al. (1998) communicate data dependence infor-
mation of C programs to the GCC back end. The data is stored in separate
files and is retrieved by the back end via a set of provided query functions.
They report average speedups of 11% on a MIPS R10000. Several recent
papers describe the use of Java class file attributes to store program infor-
mation. Krintz and Calder (2001) describe a framework to annotate JVM
code with information collected off-line. They convey counts of local vari-
able usage and control-flow information. The annotations are then used by
dynamic compilers to guide optimisation. They report reduced optimised
compilation overhead by 78% and speedups of 7% on average for a set of Java
programs. Pominville et al. (2001) encode optimisation information in class
file attributes for elimination of array bounds checks. They show speedups
of up to 10% in the Kaffe virtual machine with a just-in-time compiler.

Some of these related projects exploit static program information for
language-specific optimisations, like array bounds checking elimination in
Java. In contrast, the annotations proposed here can be used to convey
information that can be used for language-independent optimisations in the
back end.

In a typed intermediate language, it is possible to use a very expressive
type system which can encode complex propositions and proofs about a
program (Shao et al. 2002), possibly including all the properties captured
by the annotations proposed here.

The factored control-flow graph (FCFG) (Choi et al. 1999) is a program
representation that is more compact than traditional CFG representations

CHAPTER 3. HIGH-LEVEL ANNOTATIONS 32

for programs that have many operations that may raise exceptions. The
main advantage of a FCFG is that it results in smaller program graphs.
The annotations of Section 3.1.2 are useful for code generators that use
either CFGs or FCFGs.

It remains to evaluate the actual performance gains that an optimising
code generator can achieve using the annotations proposed here. Cheng and
Hwu (2000) and Ghiya et al. (2001) describe thorough studies of the im-
portance of different memory dissambiguation techniques for optimizations.
Young and Smith (1999) present a performance analysis of branch predic-
tion. Mowry et al. (1992) evaluate different prefetching techniques applied
to scientific codes. I am not aware of similar evaluations of the impact of
GCC’s pure and const annotaions, or of effects type systems proposed for
optimization of functional languages (Tolmach 1998; Benton and Kennedy
2000).

Chapter 4

C-- Support for Run-time

Services

C--’s design is unique in that it includes not only an intermediate language,
for use by the front end, but also a low-level run-time system, for use by
the front-end run-time system (Peyton Jones et al. 1999; Ramsey and Pey-
ton Jones 2000). Using C--’s run-time system, a garbage collector can locate
pointers in the stack unambiguously and an exception dispatcher can unwind
the stack.

This chapter extends the low-level run-time system for C--, making the
following contributions:

• I extend the interface to support the implementation of generational
stack collection (Cheng et al. 1998) (Section 4.4).

• I generalise and simplify the interface so that an accurate garbage
collector can locate pointers in the stack efficiently (Section 4.5).

• I augment the interface to support stack walking in source languages
that provide a foreign function interface (Section 4.7).

Though demonstrated here in the specific context of C--, the concept of
a low-level run-time system applies equally well to compiler-target languages
other than C-- (including C!) and also to generic code generators, such as
MLRISC (George and Leung 2000) and the GCC back end (Stallman 2001).

33

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 34

4.1 Introduction

The run-time system for a programming language provides such high-level
services as garbage collection (GC) and exception handling.

A garbage collector must find, and perhaps modify, all pointers to dy-
namically-allocated objects—the GC roots, or root set (Jones 1996). An
accurate garbage collector needs to identify unambiguously the location and
liveness of all such pointers. If, furthermore, the collector might relocate
objects, the locations of heap objects may change during garbage collection,
and the collector must be able to redirect each root to point to the new
location of the corresponding heap object. Figure 4.1 sketches how a simple,
accurate garbage collector scans the stack of activation frames for GC roots.

void gc_scan_stack() {
activation type act;

act = top activation ;
for (;;) {
for each root r in activation act {
process r;

}
if (act==bottom activation) {
/* Reached bottom of stack: we are done */

break;
} else {
act = caller’s activation ;

}
}

}

Figure 4.1: Algorithm for scanning the stack in an accurate garbage collec-
tor.

In some implementations of exception handling, when an exception is
raised, the exception mechanism unwinds the call stack until it finds an
activation where a handler for that exception is in scope;1 then it invokes
that handler. Depending on the semantics of the source language, additional
actions may have to be executed as activations are unwound. For instance,
in C++, as the call stack is unwound, destructors must be invoked for those

1We say that a handler is in scope, or that control is inside the scope of a handler when
the program counter lies within the section of the program protected by the handler.

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 35

objects whose dynamic scope terminates. Figure 4.2 shows the pseudo-code
of a simple exception dispatcher.

void dispatch(exception type exn) {
activation type act;

act = top activation ;
for (;;) {
if (a handler for exn is in scope) {
restore values of non-volatile registers;

SP = SP of activation act;
invoke handler, passing exn as a parameter;

} else if (act==bottom activation) {
/* Reached bottom of stack */

report_unhandled_exception(exn);
} else {
call destructors in open scopes of act;
act = caller’s activation ;

}
}

}

Figure 4.2: Algorithm of a simple exception dispatcher.

4.2 Compiler Support for Run-Time Services

In order to provide some of its services, the run-time system of a program-
ming language requires information available only to the compiler.

4.2.1 Accurate Garbage Collection

Accurate garbage collectors must be able to find all pointers in the stack and
in the registers at any point in the program at which collection may occur.
To support the garbage collector, the compiler can emit pointer maps, static
tables that describe the location of live local variables and temporaries that
contain pointers to heap-allocated objects (Diwan et al. 1992). (In contrast,
conservative collectors (Boehm and Weiser 1988) need little or no support
from the compiler to locate heap pointers in the call stack: the collector
scans every location in the stack.)

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 36

The collector needs a pointer map for every gc-point. The gc-points
are allocation points, function calls and, in multithreaded languages with
pre-emptive scheduling, all other program points where a thread can be
suspended. Furthermore, when a collection is triggered by one of the threads,
all other threads must be advanced up to a gc-point. If a thread is executing
a loop, advancing might take an arbitrary amount of time. To make this
amount bounded, gc-points are inserted in every loop.2

4.2.2 Exception Handling

To support exception handling by stack unwinding3 the compiler emits static
tables that describe which exception handlers are in scope at any point in
the program at which an exception can be raised (Koenig and Stroustrup
1990).

The term safe point is commonly used to refer to all program points
where the program can be interrupted by the run-time system, and for
which the compiler emits static descriptors. I will use it in the remaining of
the chapter.

4.2.3 Static Information to Support the Run-Time System

Garbage collection and exception handling require two kinds of information
from the compiler. The first kind of information is available to the front
end:

• which C-- function parameters and local variables are heap pointers;

• which exception handlers are in scope at which program points;

• which destructors are in scope at which program points.

The second kind of information is only available to the back end:

• whether each local variable and parameter is live, where it is located
(if live), and how this information changes as the program counter
changes;

2Alternatives that avoid the need to advance threads are to make every machine in-
struction a gc-point (Stichnoth et al. 1999) or to scan the topmost activation of every
thread conservatively (Barabash et al. 2001).

3Exception handling can also be implemented in the generated code, without sup-
port from a run-time system. Ramsey and Peyton Jones (2000) briefly survey different
exception handling mechanisms used in several language implementations.

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 37

• how to pass parameters to an exception handler or to a destructor;

• the locations where the non-volatile (callee-saves) registers are saved,
if any;4

• the size of each activation.

If C is used as a portable assembly language and garbage collection is
required, a conservative collector (Boehm and Weiser 1988) must be used.
If, on the other hand, the compiler targets JVM code, our programs must
use the garbage collector provided by a JVM. The problem is that JVM
implementations are optimised for the allocation patterns of Java, which
are often different from those of other languages. For instance, functional
languages allocate memory at higher rates than Java (Wakeling 1999).

C--’s run-time system provides access to the information that the back
end generates, through a well-defined interface. Using C--’s run-time sys-
tem, a garbage collector can locate pointers in the stack unambiguously
and an exception dispatcher can unwind it. The only intimate cooperation
required is between the C-- compiler and its run-time system; the front
end works with C-- at arm’s length, through a well-defined language and a
well-defined run-time interface.

4.3 The C-- Run-Time Interface

This section presents the original C-- run-time interface, as proposed by
Peyton Jones et al. (1999). Using this interface, a front-end run-time system
can walk the call stack of the program and inspect the contents of the
individual activation frames.

The state of a suspended C-- computation consists of a logical stack of
function activations5 and some saved registers. In the C-- run-time interface,
an activation frame on the stack is represented by an activation handle,
which is a value of type cmm_activation_T.

Callee-saves registers that logically belong to one activation are not nec-
essarily stored with that activation; they may be stored in the physical frame
of an activation that is arbitrarily far away.

4A compiler might choose not to use any of the machine registers in a callee-saves
fashion.

5This logical stack can be implemented using the system stack, but also by other means,
such as allocating activations in the heap.

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 38

C-- can support high-level run-time services, such as garbage collection,
as follows. When garbage collection is required, control is transferred to the
front-end run-time system. The garbage collector can navigate the stack
using a function to start at the topmost activation (cmm_top_activation)
and a function to move one activation down (cmm_callers_activation);
the latter also signals when the bottom-most activation is reached. In each
activation on the stack, the garbage collector finds the location of the local
variables using cmm_find_var. An exception dispatcher can use these same
functions to unwind the stack.6

The activation handle abstraction hides the following machine-dependent
details:

• the layout of an activation frame,

• the direction in which the stack grows within the target machine’s
address space, and

• the details of manipulating callee-saves registers.

C-- hides the complexity of walking the stack behind the following two
functions:7

void cmm_top_activation(cmm_activation_T *act). Before con-
trol is transferred to the front-end run-time system, the state of a C--

program is captured by making a call to the C-- run-time system.
cmm_top_activation uses that state to initialise activation handle
act to refer to the topmost C-- activation on the call stack.

int cmm_callers_activation(cmm_activation_T *act) modifies ac-
tivation handle act to refer to the activation to which control will
return when act returns. cmm_callers_activation returns zero if
there is no such activation frame, which means that act already refers
to the bottom-most activation on the C-- stack.

There is also a function that allows inspection and modification of the
variables of a C-- function:

6Additional functions are needed to transfer control to an exception handler. These
are described by Ramsey and Peyton Jones (2000) and will not be discussed here.

7Without loss of generality we assume that the front-end run-time system is imple-
mented in C. Thus, I describe here a C interface. C-- implementations can provide inter-
faces with languages other than C.

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 39

void *cmm_find_var(cmm_activation_T *act, int var_index)

asks an activation handle for the location of a particular parameter
or local variable in the activation. cmm_find_var returns the address
of the specified variable. The front end is thereby able to examine or
modify the value. cmm_find_var returns NULL if the variable is dead.

Notice that cmm_find_var always returns a pointer to a memory loca-
tion, even though the specified variable might be held in a register at the
moment at which garbage collection is required. But by the time the garbage
collector is walking the stack, the C-- implementation must have stored all
the registers away, and it is up to the C-- run-time system to figure out
where the variable is, and to return the address of the location holding it.

C-- supports the collector only in locating pointers in the C-- call stack.
Other tasks, such as finding pointers in heap objects, can be managed en-
tirely by the front-end run-time system (allocator and collector) with no
support from C--. To find roots stored in global variables, the collector
and the front end can establish a private protocol and no further support is
required from C--. For example, the front end can arrange to deposit global
roots in a special data section.

Figure 4.3 shows a refinement of the algorithm of Figure 4.1 that uses
the functions of the C-- run-time interface.

It remains that we describe how the garbage collector knows which vari-
ables are roots.

4.3.1 Determining Which C-- Variables are Roots

Suppose the garbage collector is examining a particular activation frame. It
can use cmm_find_var to locate a particular variable. But how can it know
whether that variable is a pointer? (See the fragment of pseudo-code in Fig-
ure 4.3 that reads “if (ith variable is a pointer into the heap)”.) This
information is known only to the front end, which must make it available to
the garbage collector. The following mechanism is proposed by Peyton Jones
et al. (1999):

• The front end builds a static initialised data block—a front-end gc-
descriptor—that says which C-- parameters and local variables cor-
respond to heap pointers in the source program. The format of the

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 40

typedef void *pointer;

void gc_scan_stack() {
cmm_activation_T act;

cmm_top_activation(&act);
for (;;) {
int i;
for (i = 0; i < number of variables in act; i++) {
if (ith variable is a pointer into the heap) {
pointer *rootp = cmm_find_var(&act, i);
/* Trace GC root, if live */

if (rootp != NULL) gc_forward(rootp);
}

}
cmm_callers_activation(&act) || break;

}
}

Figure 4.3: A simple stack scanning function, targeted to C--.

gc-descriptor is private to the front end and its run-time system; C--
neither knows nor cares.

• The front end uses special C-- syntax to associate a range of program
counters to a gc-descriptor.

• The C-- run-time system provides a function to map a gc-point to the
corresponding gc-descriptor (cmm_get_descriptor).

For illustration purposes, let us assume that front-end gc-descriptors
have the following type:

struct front_end_gc_descriptor {

unsigned var_count;

unsigned char is_ptr[1];

};

This represents a list of booleans, one for each parameter and local variable.
The list is encoded as an array of variable length with is_ptr[i] being
the value of the ith boolean and var_count the length of the array.8 (A

8An array of variable length can be implemented in C by defining an array type of
size one element and assigning to a value of this type a dynamically-allocated array of the
desired size.

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 41

production compiler would of course use a more compact encoding than a
character for every boolean, for instance a bit map.)

When the garbage collector scans the stack, it calls the following C--

run-time function:
void *cmm_get_descriptor(cmm_activation_T *act),

which returns the address of the gc-descriptor of the gc-point where act is
suspended. The garbage collector finds the live pointers in an activation
as follows. For each local variable, it determines whether it is a pointer by
consulting the front-end gc-descriptor. For those variables that are known
to be pointers, it gets their address by calling cmm_find_var.

The code of a sample function to scan the stack is shown in Figure 4.4.
(This implements the algorithm of Figure 4.1.)

struct front_end_gc_descriptor {
unsigned var_count;
unsigned char is_ptr[1];

};
typedef void *pointer;

void gc_scan_stack() {
cmm_activation_T act;

cmm_top_activation(&act);
for (;;) {
struct front_end_gc_descriptor *d;
int i;

d = cmm_get_descriptor(&act);
for (i = 0; i < d->var_count; i++) {
if (d->is_ptr[i]) { /* if ith local is a root */

pointer *rootp = cmm_find_var(&act, i);
/* trace root, if live */

if (rootp != NULL) gc_forward(rootp);
}

}
cmm_callers_activation(&act) || break;

}
}

Figure 4.4: Using front-end gc-descriptors to determine which C-- variables
are roots.

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 42

In essence, the construction of pointer maps for garbage collection is
split between front end and back end, and the two sources of information are
combined at run-time, during garbage collection. The back end emits static
descriptors that map live C-- variables to their run-time locations. The front
end emits static descriptors that map all C-- variables to booleans. Tight
coupling is required between front end and back end, since they must use
the same numbering scheme for C-- variables in their respective descriptors.
A conceptual view of this architecture is shown in Figure 4.5. In the figure,
dashed arrows depict interactions that occur at run-time.

C−−

f−data

source

object
code data

C−− RTSRTS

C−−

front end C−− compiler

Figure 4.5: Architecture of compiler and RTS using the C-- interface of
Peyton Jones et al. (1999).

4.3.2 Implementing the C-- run-time interface

An activation handle (of type cmm_activation_T) is an abstract type whose
contents can only be accessed through the functions in the C-- run-time
interface. It can be implemented as a record consisting of a pointer to
an activation frame on the stack, together with pointers to the locations
containing the values that the callee-saves registers had at the moment when
control left the activation. The shape of an activation handle varies between
machines, since different architectures have different number of registers. By
making the activation handle an abstract type, this detail is hidden from
the front end run-time system.

The function cmm_top_activation initialises an activation handle to
point to the topmost activation frame on the C-- stack and to the private

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 43

locations in the C-- run-time system that hold the values of callee-saves
registers.

The C-- code generator builds a statically-allocated table of activation
descriptors, indexed by safe point. Each activation descriptor contains:

• The size of the activation frame. (cmm_callers_activation needs
this to move to the next activation record in the call stack.)

• The locations of live local variables. The location of a live variable
might be an offset within the activation frame, or it might be the name
of a callee-saves register. cmm_find_var uses this location to find the
address of the true memory location containing the variable’s value—
either an address within the activation frame itself, or the address of
the location holding the appropriate callee-saves register, as recorded
in the activation handle.

• The locations where any modified callee-saves registers have been saved.
cmm_callers_activation uses this information to update the point-
ers to callee-saves-registers in the activation handle.

• The location of the return address. cmm_callers_activation uses it
to index into the table of activation descriptors, giving the descriptor
of the next activation in the stack.

Figure 4.6 shows the whole machinery in action during a traversal of
the call stack. The activation handle combines the static information in an
activation descriptor with the dynamic value of the stack pointer and the
locations of saved registers. Through the activation handle, the front-end
run-time system can access the local variables of an activation. In the figure,
the handle refers to an activation that, when it was suspended, had two live
locals. local-1 was stored in a slot in the activation frame and local-2

was assigned to callee-saves register number 2. The contents of this register
was later saved by another function in its own activation frame, in a location
tracked by the activation handle. Similarly, the current function uses callee-
saves register 2 to hold local-2 and saves its previous contents in its own
activation. Nothing is assigned to callee-saves register 1 by this activation,
so there was no need to save it. However, the location where callee-saves
register 1 was most recently saved is still tracked by the activation handle;

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 44

an activation suspended further down in the stack might have assigned a
local to this register.

activation handle
return address

callee−saves−1

callee−saves−2

SP

local−1
callee−saves−2

Call stack

SP

local−1

local−2

return address

frame size : 64

callee−saves−1

callee−saves−2

callee−saves−2

Figure 4.6: During traversal of the stack, the local variables of a suspended
activation are accessible via the activation handle.

The C-- run-time interface described in this section has some limitations
that hinder the implementation of certain services of the high-level run-time
system. In the following sections I describe these limitations and propose an
improved C-- run-time interface that fixes the problems. More specifically,
the issues that are addressed are: support for generational stack collection
(Cheng et al. 1998) (Section 4.4), a more efficient method of locating GC
roots for accurate garbage collection (Section 4.5), and support for stack
walking in the presence of foreign calls and callbacks (Section 4.7).

4.4 C-- Run-Time Support for Generational Stack

Collection

In many programs, most objects live a very short time, while a small per-
centage of them live much longer (Wilson 1994). Objects with a long life
survive many collections and are copied at every collection, over and over.
This is a major source of inefficiency in garbage collectors. Generational
collection (Lieberman and Hewitt 1983; Ungar 1984) avoids much of this

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 45

copying by segregating objects into multiple areas by age, and collecting
areas containing older objects less often (Wilson 1994).

Cheng et al. (1998) have observed that in programs with deep stacks,
the cost of scanning all the activations can become the dominant cost of
garbage collection. Since most deep stacks are not frequently unwound,
most of the old stack frames are unchanged across successive collections. If
the collector can determine which stack frames are unchanged, then the cost
of root scanning can be reduced by reusing the information from the previous
collection. Cheng et al.’s generational stack collector identifies unchanged
frames as follows:

Every time the stack is scanned, the collector changes the re-
turn address of every nth stack frame to a special stub function,
while recording the original return address in a table. (In their
experiments, they use a value of 25 for n.) When the collector
encounters a marked frame, it knows that its root information
has not changed since the previous collection. It is now safe to
stop scanning the rest of the stack. The stub function simply
returns to the address stored in the table.

A generational stack collector that uses C--’s run-time interface needs
to inspect and modify the return address stored in an activation frame.
The original C-- interface provides functions to inspect and modify only the
locals of a suspended activation. An additional function is necessary that
provides the same level of access to the return address of an activation. The
following function serves this purpose:

void **cmm_saved_return_address(cmm_activation_T *act)

cmm_saved_return_address asks activation handle act for the location of
the return address in the activation frame to which act refers. Figure 4.7
shows a simple function that implements generational stack scanning, tar-
geted to C--’s run-time interface.

4.5 Compile-Time Pointer Maps

I have discovered that the two sources of information required to construct
pointer maps can be combined at compile-time, rather than at run-time,

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 46

void gc_generational_scan_stack() {
cmm_activation_T act;

cmm_top_activation(&act);
for (;;) {
void **loc_ret_addr;

loc_ret_addr = cmm_saved_return_address(&act);
/* Stop scanning now if this activation has been

previously marked */

if (*loc_ret_addr == addr_of_stub_function) break;
/* Record return address and mark this activation */

record_in_table(*loc_ret_addr);
*loc_ret_addr = addr_of_stub_function;
/* Scan this activation */

<...>
/* Move to activation of caller, if any */

cmm_callers_activation(&act) || break;
}

}

Figure 4.7: Generational stack collection targeted to C--.

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 47

resulting in improved performance, smaller object code size and a simpler
interface between the front-end run-time system and C--.

To generate consolidated pointer maps in the same way as monolithic
compilers do (Diwan et al. 1992), we can proceed as follows:

Instead of constructing the pointer map as two separate struc-
tures, one emitted by the front end and the other emitted by the
C-- compiler, the front end can express, in C-- syntax, which
C-- variables need to be included in the pointer maps. Then, the
C-- compiler emits a unified map that merges the two sources of
information.

This scheme has some important advantages over the method proposed
by Peyton Jones et al. (1999):

• A source of artificial coupling between the front-end run-time sys-
tem and C-- disappears, namely the need to use a specific numbering
scheme for C-- variables.

• The implementation of the front end is simpler. Front-end gc-descrip-
tors are not required for garbage collection. The front-end implemen-
tor does not need to devise a space-efficient encoding for descriptors,
nor write the code that emits them.

• Garbage collection is more efficient. Scanning each activation involves
less work.

• The size of the program’s object code is smaller. Only one kind of
static descriptor is required and it includes less information (only live
pointers vs. all variables).

The new code to scan the stack using the simplified interface is shown in
Figure 4.8. This code uses a function that has not been introduced before:

int *cmm_var_count(cmm_activation_T *act) returns the number
of live pointers referred to by an activation handle.

Compared to the original code of Figure 4.4, there are several improve-
ments:

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 48

void gc_scan_stack() {
cmm_activation_T act;
cmm_top_activation(&act);
for (;;) {
int i;
for (i = 0; i < cmm_var_count(act); i++) {
pointer *rootp = cmm_find_var(&act, i);
/* only live roots reported by cmm_find_var */

gc_forward(rootp);
}
cmm_callers_activation(&act) || break;

}
}

Figure 4.8: Garbage collector targeted to C-- using unified pointer maps.

• The loop count is smaller. The value returned by cmm_var_count is
the number of locals that are pointers and are live at the gc-point,
rather than the total number of locals of the C-- function. Accord-
ingly, cmm_find_var(&act,i) returns the address of the ith variable
tracked by activation descriptor act. Notice that this differs from
the behaviour of cmm_find_var in the original interface (Section 4.3),
where cmm_find_var returns the address of the ith variable of the
procedure.

• Two conditional tests are eliminated: the check for “pointer-ness”, and
the check for liveness.

• The call to cmm_get_descriptor is eliminated.

Without these optimisations, there could be noticeable garbage collec-
tion overheads in language implementations that use C--. In some cases,
there may be many active activations in the call stack when a collection is
necessary. (Cheng et al. (1998) have observed that, in programs with deep
recursion, there can be more than 4000 activations in the call stack.)

Furthermore, since the pointer maps are now smaller, the size of the
program’s object code is reduced.

It remains that I describe the syntax that the front end uses to indicate
what C-- formal parameters and local variables that correspond to heap
pointers in the source language. It suffices to add a qualifier to each decla-

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 49

ration, as follows:

f(bits64 arg1, bits64 gc_root arg2) {

bits64 gc_root local1;

bits64 local2;

...

}

In this example arg2 and local1 have been marked using the keyword
gc_root. The C-- compiler will record information only about these two
locals in any pointer maps that it emits for function f.

An alternative to the gc_root qualifier would be to add reference types
to C--. Below I discuss why this does not work in all cases.

Ambiguous Types at Compile-Time

Sometimes it is not known at compile-time whether a variable is a pointer.
For instance, in the TIL compiler (Tarditi et al. 1996), whether a function
parameter is a pointer may depend on the run-time value of another param-
eter. That is, in order to support garbage collection in C--, it is not enough
to add reference types to C--: in the TIL compiler variables other than
pointers need to be inspected by the garbage collector. When types are not
known at compile-time the front end must annotate as gc_root every C--

local that might need to be inspected or modified at run-time. C-- provides
access to the run-time location of all marked variables; it is up the front-end
run-time system to determine what is a pointer and what is not.

4.5.1 Support for Debugging

In some situations, the front-end run-time system may want to inspect or
modify C-- variables other than live pointers. This happens, for instance, in
a debugger targeted to the C-- run-time system (Peyton Jones et al. 1999).
In this case, the C-- compiler needs to emit debugging descriptors that give
the location of all parameters and local variables of a function, not only heap
pointers. But this can be requested when it is needed, with an argument to
the C-- compiler.

The insight behind the interface proposed in this chapter (in contrast to
the original C-- interface) is the following:

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 50

Back-end descriptors for garbage collection are independent from
back-end descriptors for debugging.

In the new setting, the costs of debugging are paid only when this service
is required; the performance of garbage collection is not affected in any
significant way.

4.6 The Problem of Language Interoperability

An increasing number of high-level programming languages provide a foreign-
function interface (FFI) that enables interoperability with code written in
other languages—typically C. A FFI gives access to the wealth of libraries
that have been developed in C. In fact, it can be argued that providing a FFI
is becoming essential for the success of a modern high-level programming
language (though not a sufficient condition). A few language implementa-
tions that provide a FFI are Java (Liang 1999), Caml (Leroy et al. 2002),
SML (Blume 2001), Haskell (Finne et al. 1998), Scheme (Serrano 1994) and
Mercury (Henderson et al. 2002), but the list goes on.

FFIs support, at least, calls from the source language to the foreign
language, but many of the recent systems also support callbacks from the
foreign code to the source language. For instance, the Objective Caml im-
plementation provides means to interface with C code, including callbacks
to Caml. The API includes functions to create Caml objects and to throw
Caml exceptions from C code. The Glasgow Haskell Compiler (GHC) (GHC
Team 2001) supports calls to and from C, and so do the Mercury Compiler,
the Bigloo Scheme compiler (Serrano 1994) and the GNU Java compiler
(FSF 2001).

4.6.1 Foreign Function Interfaces and Stacks

A critical implementation decision for a foreign function interface is how the
call stacks of the high-level language and the foreign language are laid out.
This has a direct impact on the implementation of run-time services that
need to walk the call stack, like garbage collection and exception handling.
The two alternatives are:

• The high-level language and the foreign code use the same call stack.

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 51

• The foreign code uses a separate call stack.

Currently, most implementations use one stack, since it makes the rest of
the run-time system simpler. In what follows, I will call this the single-stack
model.

4.6.2 Foreign Calls and Garbage Collection

FFI implementations that use a single stack model use one of the following
methods to implement garbage collection:

1. Conservative scanning of the whole stack (both source and for-
eign activations). Mercury, Bigloo and the GNU Java compiler do
this. This is also the method of choice for garbage-collected languages
that use C as a portable assembly language.

2. Accurate scanning of the source activations only. The Caml
garbage collector scans Caml activations accurately but skips foreign
frames. (The foreign code may still hold pointers into the Caml heap,
but it must “register” their location by calling a function in the Caml
run-time system.)

3. Hybrid approaches. The Java run-time system described by Barabash
et al. (2001) uses mostly accurate stack scanning : all foreign activa-
tions and the topmost activation of every thread are scanned conser-
vatively; the remaining activations are scanned accurately. The main
advantage of this scheme is that, when a collection is required, threads
can be stopped anywhere, and there is no need to advance their exe-
cution until a safe point.

To scan the whole stack conservatively, the front-end run-time system
does not require support from C--. However, to implement accurate or
mostly accurate scanning, the front end run-time system requires the services
of C--’s run-time system.

4.6.3 Foreign Calls and Exception Handling

Ramsey and Peyton Jones (2000) survey popular alternatives for imple-
menting exception handling. Stack cutting, native-code stack unwinding
and continuation-passing style do not require support from the run-time

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 52

system. Run-time stack unwinding, on the other hand, is implemented with
a stack-walking mechanism.

As for garbage collection, when the stack contains foreign activations,
the policy of the front end may be to skip them, or to traverse them by
calling a foreign unwinder. For instance, if the foreign language were C++,
its semantics requires that destructors be invoked when locals go out of
scope.

4.7 C-- Run-Time Support for Foreign Calls

The C-- stack-walking interface proposed by Peyton Jones et al. (1999)
does not support walking a stack that contains foreign activation frames.
Here, I extend the interface to make this possible.

Scanning a stack with foreign activations can be supported by C-- as
follows:

• At every foreign call, the C-- compiler emits code that saves (some-
where) the state of the C-- computation. (A precise definition of what
is included in this state appears in Section 4.7.2.)

• When cmm_callers_activation cannot find the caller of the current
C-- activation, it determines whether the caller is a foreign activation
(a callback from foreign code to C-- code), or whether we have reached
the bottom of the stack. If the former, cmm_callers_activation

queries the saved state to continue the traversal in the C-- activation
that made the foreign call. Otherwise, there are no more activations
and the stack traversal is complete.

However, this implements only one of the alternatives of Section 4.6.2,
namely “accurate scanning of source activations only”. It is not sufficient if
a garbage collector wishes to do mostly accurate scanning (Barabash et al.
2001), for instance. Furthermore, it imposes the cost of saving the state
every time the program makes a call to foreign code. Some language im-
plementations may allow foreign calls, but no callbacks; or the front end
may know that certain foreign calls make no callbacks, even if the source
language allows it. In either of these cases, it is wasteful that every foreign
call pay the cost of saving a state that will never be consulted. What C--

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 53

should provide is a mechanism to save the state at selected foreign calls,
according to policies of the front end.

Below I extend the C-- run-time interface so that a stack walker is aware
of the boundaries between sequences of C-- and foreign activations. With
knowledge of these boundaries, the stack walker can either skip the foreign
activations or walk them using mechanisms external to C--.

4.7.1 Walking a Mixed Stack

Before giving the full details of how the C-- state is saved when there is a
call to foreign code, or what exactly needs to be saved, it is useful to see the
code that walks a stack containing foreign activations. I show code for both
jumping over and traversing the sequences of foreign activations. Since the
purpose of the examples is to show how stack navigation is done, it is left
unspecified what the front-end run-time system does to each C-- activation
that it visits.

How to Skip Foreign Activations

cmm_activation_T act;

cmm_top_activation(&act);

for (;;) {

examine activation act

if (cmm_callers_activation(&act) == 0) {

/* Caller is not a C-- function. Reached bottom of a

sequence of C-- activations. Move to previous C--

sequence, if any */

cmm_saved_activation(&act) || break;

}

}

In this example, the run-time system skips foreign activations. When
the caller of a C-- function is foreign (a callback from foreign code to C--),
the traversal is continued at the previous known C-- sequence (if any), by
calling cmm_saved_activation. (Notice that the loop always terminates.
cmm_callers_activation either updates the reference act and returns 1,
or leaves the reference unchanged and returns 0.)

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 54

How to Traverse Foreign Activations

If, instead of skipping the foreign activations, the run-time system must
traverse them (perhaps with a conservative collector, as in mostly accurate
scanning (Barabash et al. 2001)), we need to know their limits in the stack.
This is depicted in Figure 4.9.

start_sp

end_sp

Call stack

activation handle

SP

C−− activations

Foreign activations

Figure 4.9: Stack limits of a sequence of foreign activations.

Two new functions in the C-- run-time system return the values of the
stack pointer that delimit the foreign activations (start_sp and end_sp in
the figure). cmm_callers_sp(&act) returns the stack pointer of the activa-
tion that act will return to. cmm_saved_sp() returns the stack pointer of
the C-- activation that made the foreign call. (cmm_saved_sp returns NULL
if there no such activation. This signals that the stack traversal is complete.)

Figure 4.10 shows example code that uses these limits to scan a sequence
of foreign activations.

Implementation

In order to continue the traversal, cmm_saved_activation consults some
state—a C-- context—that was saved just before the foreign call was made.
(The means to save a C-- context will be described later.)

Because there may be more than one sequence of foreign activations
in the call stack that the run-time system is traversing, the C-- run-time
system maintains a stack of saved contexts. Figure 4.11 depicts the contexts

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 55

cmm_activation_T act;

cmm_top_activation(&act);
for (;;) {
examine activation act
if (cmm_callers_activation(&act) == 0) {
/* Caller is not a C-- function. Reached bottom of

a sequence of C-- activations. Walk foreign

activations, if any */

void *start_sp = cmm_callers_sp(&act);
void *end_sp = cmm_saved_sp();
foreign_walk(start_sp, end_sp);
/* Continue visiting C-- frames, if any */

cmm_saved_activation(&act) || break;
}

}

Figure 4.10: Code to walk foreign activations.

stack at an execution point where there have been two foreign calls, both of
which made a callback to C-- code.

During the traversal, one of the saved contexts is designated as current.
Initially, cmm_top_activation makes the top saved context the current one.

The call cmm_saved_activation(&act) updates activation handle act

to point to the activation captured by the current C-- context, and moves
current_context down one position. Figure 4.12 depicts the situation dur-
ing a stack traversal, before and after cmm_saved_activation is called.

cmm_saved_activation returns zero when the saved contexts stack is
empty. This signals that the stack does not contain any more C-- activations
under the one that act points to. The traversal is now complete.

Storage for the Stack of C-- Contexts

The memory to hold the stack of C-- contexts is managed by the C-- run-
time system without further support from the high-level run-time system.
C-- can use its own heap or it can use the call stack as the allocation area
for C-- contexts. In the latter scheme, a context is saved in the activation
frame of the C-- function that made the foreign call. (A pointer to the
previous context is also saved in that activation, in order to implement a
stack by means of a linked list.)

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 56

Call stack

Saved contexts stack

SP

Foreign activations

C−− activations

Figure 4.11: A stack containing foreign activations and its associated saved
contexts stack.

4.7.2 Saving the C-- State

Finally I describe exactly what state is contained in a C-- context and what
interface the C-- run-time system provides to save this state in its private
saved contexts stack.

The State in a C-- Context

A C-- context must capture the state of a C-- activation that calls foreign
code. More precisely, it must capture the state at the program counter where
control leaves that C-- activation. The C-- state that needs to be saved is
everything that cmm_saved_activation will need to initialise an activation
handle, namely the following:

• The (static) activation descriptor of the C-- activation.

• The (dynamic) value of the stack pointer of the C-- activation.

• The (dynamic) locations where the callee-saves registers have been
saved, if any.

Hence, the saved context must contain the following:

• The return address of the foreign call. This return address is a safe
point and there exists an activation descriptor for this address, emitted

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 57

Call stack

Saved contexts stack

act

SP

current_context

(a) Before calling cmm_saved_activation.

Call stack

Saved contexts stack

act

SP

current_context

(b) After calling cmm_saved_activation. act points to the activation
captured by current_context. ccurrent_context is updated.

Figure 4.12: Traversing a stack that contains foreign activations.

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 58

by the C-- compiler. cmm_saved_activation will map the return
address to that descriptor.

• The value of the stack pointer.

• The values of the callee-saves registers.

Notice that the values of the caller-saves registers are not needed, since
they cannot contain anything that will be live after the foreign call returns.

Saving the C-- Context

Before each foreign call that might be suspended while the front-end run-
time system runs, a context must be pushed. When the call returns, the
context must be popped. The C-- run-time system provides two functions
to push and pop the C-- state, respectively. A foreign call that might be
suspended while the run-time system runs must be wrapped between calls
to these two functions, as shown below.9

cmm_push_state();

r = foreign "C" f(expr1,...,exprn);

cmm_pop_state();

Notice that we need to push a context that reflects the C-- state when
control leaves the C-- activation at the foreign call, and this sequence pushes
a context that reflects the state when control leaves the activation at the
call to cmm_push_state itself! Perhaps the values of the callee-saves regis-
ters and the stack pointer are not the same at these two program points.
Fortunately, this is not the case. Neither cmm_push_state nor the code to
pass parameters to f overwrite the callee-saves registers. The stack pointer
remains unchanged as well; even if the foreign call requires parameters to be
passed on the stack, the C-- compiler can arrange it so that this does not
require modifying the stack pointer during call setup.

Alas, the context must include also the return address of the foreign call.
Hence, this address must be a parameter of cmm_push_state. The problem
is that, in general, it is not possible to write a label in source C-- that refers
exactly to the return address of a call. For instance, given this code:

9Recall that the qualifier foreign "C" tells the compiler that it should use the C calling
convention for the parameters and result of the call.

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 59

r = foreign "C" f(expr1,...,exprn);

L:

the C-- compiler generates low-level code similar to this:

formal arg1 = expr1

...

formal argn = exprn

call f

r = formal ret

L:

The label names the address of the instruction following r = formal ret,
and not the return address of the call.

What we need is C-- syntax to label the return instruction of a function
call. An annotation to call statements can serve this purpose:

cmm_push_state(R);

r = foreign "C" f(expr1,...,exprn) "return_label" R;

cmm_pop_state();

In summary, these two functions and the return_label annotation pro-
vide all the required functionality. Moreover, for the front end, the anno-
tation is very lightweight in terms of additional notation and, for the C--

compiler, it is straightforward to translate to assembly or machine code.

4.8 Support for Multi-Threaded Languages

Modern programming languages increasingly support multiple threads of
execution, either as built-in language constructs or as a library that provides
an interface to threads services provided by the operating system.

Typically, the front-end run-time system maintains a thread control block
(TCB) for every thread that is created by the program. This data struc-
ture includes a thread identifier, a pointer to the thread’s stack, etc. In
a front-end run-time system targeted to C--, the TCB must contain an
extra field for use by the C-- run-time system. This imposes negligible
space overhead per thread. In addition, the C-- run-time system provides
a multi-threading version of the functions that save and consult C-- con-
texts, namely cmm_top_activation, cmm_push_state, cmm_pop_state and

CHAPTER 4. C-- SUPPORT FOR RUN-TIME SERVICES 60

cmm_saved_activation. The multi-threading variants take the field in the
TCB reserved for C-- use as an extra parameter.

4.9 Related Work

The method of traversing a run-time call stack with the aid of descrip-
tors emitted by the compiler has been described many times in the specific
contexts of exception handling, garbage collection and debugging. For in-
stance, in his PhD dissertation, Boquist (1999) describes a compiler for
the functional language Haskell where the back end exports a function
gc_find_roots() that the garbage collector uses to locate roots in the
stack. The novelty in C-- is that it provides an interface that is language-
independent and can be used to support a variety of high-level run-time
services.

Hudson et al. (1991) have implemented a language-independent garbage
collector toolkit. The toolkit provides a generational garbage collector. Lan-
guage implementations that use the toolkit must provide functions that im-
plement language-specific functionality. These include a function to copy an
object in memory and a function to find pointers inside an object. In addi-
tion, the language-specific part is responsible for locating all root pointers
in the stack and in global memory.

Wilson and Johnstone (1993) have developed a real-time garbage col-
lector that is suitable for any garbage collected language implementation.
According to (Wilson 1994), it has been adapted for use with C++, Eiffel,
Scheme, and Dylan.

Microsoft has recently developed a common intermediate language and
a common language run-time system (Meijer and Gough 2001), with sim-
ilar goals of those of the Java virtual machine. In this system, though,
there is more emphasis on supporting multiple programming languages. All
languages share the same run-time system and execute in the same virtual
machine. Nevertheless, the intermediate language is a substrate to imple-
ment object-oriented languages. As such, its run-time system is optimised
for that case.

Chapter 5

Compiling C--

This chapter describes the implementation of cmmc, a compiler for C--. It
divides into two sections, describing translation of C-- into assembly code
and optimisations, respectively.

5.1 Compiling C--

cmmc uses standard compiler technology, a lexer generator (ML-Lex (Appel
et al. 1994)) and a parser generator (ML-yacc (Tarditi and Appel 2000)),
to build an abstract syntax tree. Next, cmmc performs simple type-checking
to detect erroneous C-- constructs, like using operators with values of the
wrong type. Finally, it uses the generic code generator MLRISC (George and
Leung 2000) to perform instruction selection, to perform register allocation
and to generate assembly language.

cmmc implements only some of the low-level optimisations listed in Sec-
tion 1.1. Nevertheless, the performance of the resulting code is satisfactory.
(Chapter 7 presents a performance evaluation.)

Much of the work performed by cmmc consists of standard code gen-
eration technology. This chapter describes only the following C---specific
issues:

• The calling convention that C-- must use, given the requirement to
support tail-call optimisation.

• The differences between C-- continuations and exception handlers in
high-level languages. The compilation of C-- continuations.

61

CHAPTER 5. COMPILING C-- 62

• A novel way of implementing reserved machine registers.

5.1.1 The C-- Calling Convention and Tail Call Optimisation

A calling convention specifies what machine resources (registers or memory
locations) are used to pass parameters to functions and to return results.
A calling convention also specifies what registers must be preserved by the
called function (callee-saves registers) and which ones may be overwritten
(caller-saves), but this will not be discussed further here.

Compiler writers should use the most efficient calling convention avail-
able in the target architecture. In this section I demonstrate that the com-
bination of two features of C-- (tail-call optimisation and separate com-
pilation) disallow the use of the most efficient convention in the general
case. Section 5.2.3, Optimising Overflow Parameters of Known Functions,
describes special cases where C-- functions can use the optimal convention.

Description of Calling Conventions

In the x86 architecture the convention is to pass all parameters on the stack.
Newer architectures tend to have more registers than the x86 (32 or more,
while the x86 has only 8) and since accessing memory is more costly than
accessing registers, manufacturers specify calling conventions that use some
of the registers to pass parameters (and return results). The remaining
parameters are passed in memory, starting at a known offset from the stack
pointer. Parameters that are passed in memory, according to the calling
convention, will be referred to as overflow parameters.

Below I describe different standard conventions for passing overflow pa-
rameters. We will see that some calling conventions are more efficient than
others.

To show what the different conventions specify, I will use as an example
a call to a function f with two overflow parameters. The actual values of
the parameters are x and y. It is assumed that 4 bytes are required to hold
each value, that the first overflow parameter must be placed at the top of
the stack, and that the stack grows from high addresses to low addresses.
The code to pass the parameters that go in registers is not shown.

• Convention 1: The caller pushes overflow parameters before the call
and pops them after the call.

CHAPTER 5. COMPILING C-- 63

sp <- sp - 8

[sp]<- x

[sp+4] <- y

call f

sp <- sp + 8

This is the convention of the x86 on Unix. The cost is two instruc-
tions at each call point to adjust the stack pointer. However, the x86
also provides a push instruction, which decrements the stack pointer
automatically. If a push instruction is used, the cost in the x86 is
one instruction per call. In a variant of this convention, GCC lets the
arguments of all the calls in the same basic block pile up on the stack
and deallocates them with a single increment of the stack pointer after
the last call.

• Convention 2: The caller pushes overflow parameters before the call,
and the callee pops them before it returns.

sp <- sp - 8

[sp] <- x

[sp+4] <- y

call f

This is the x86 convention on the Windows operating system. The
callee can deallocate its arguments together with the rest of its own
activation frame, in one single increment. Deallocating in the callee
leads to better code density, since the deallocation is not repeated at
every call site.

• Convention 3: Space for overflow parameters is allocated as part of
the caller’s frame. The stack pointer does not have to be decremented
or incremented at every call site.

[sp] <- x

[sp+4] <- y

call f

Space is reserved in the caller’s frame to pass the overflow parameters
to all the calls that the caller makes. This memory area is large enough
to hold the overflow parameters of the call with the largest number of

CHAPTER 5. COMPILING C-- 64

parameters. This space is allocated (resp. deallocated) by the caller
at entry (resp. at exit), and not once for every call site. This is the
cheapest convention in terms of instruction count, and it is used by
many modern processors, including Alpha, Sparc, and PPC.

Tail Call Optimisation

The operational semantics of C-- requires that every function deallocate its
activation frame when it makes a jump. Clinger (1998) has expressed the
space behaviour of tail calls as follows:

“A tail call does not cause an immediate return, but passes the
responsibility for returning from the procedure that performs
the tail call to the function it is calling. In other words, the
activation of a procedure extends from the time it is called to
the time that it performs either a return or a tail call.”

With this rule, the space consumed by a sequence of tail calls is constant,
instead of linear on the size of the sequence. This allows us to express
iterative computations using recursion, and still use constant space (Clinger
1998).

Tail call optimisation is an important optimisation for programs where
tail calls are very frequent, such as those written in functional or logic lan-
guages. (In fact, it is a required optimisation in the Scheme programming
language (Abelson et al. 1998).)

Tail-call optimisation is increasingly important in contexts other than
functional languages. Recent experimental and theoretical research has
shown that some matrix computations that have been traditionally im-
plemented by looping can run faster when expressed with (tail-)recursive
algorithms (Yi et al. 2000). Such algorithms naturally exhibit memory lo-
cality properties that can be exploited by the multi-level memory hierarchies
common in modern microprocessors.

Overflow Parameters in C--

The requirement that the activation of a function be deallocated when the
function makes a jump constrains the choice of calling convention for overflow
parameters of jumps. But because a C-- function can be reached both from

CHAPTER 5. COMPILING C-- 65

normal calls and from tail calls, the same calling convention must be used
for both.

While implementing a calling convention for C--, I realised (together
with Simon Peyton Jones and Lal George) that, in order to support unre-
stricted tail call optimisation, C-- cannot use Convention 3. The following
example shows why:

g() {

...

jump f(1,2,...,20);

}

In Convention 3, overflow parameters are passed in the caller’s frame (g
in the example). On the other hand, the jump requires that g’s frame be
deallocated before transferring control to f. These two conditions together
imply that g can only pass f’s overflow parameters in the frame of g’s caller
(to which f will return). The only possible way of doing this is if every caller
of g reserves enough space for f’s overflow parameters. And indeed for the
overflow parameters of anything that f jumps to! In the presence of separate
compilation, the compiler cannot know the whole call graph. Therefore, if
C-- has to guarantee constant space consumption of computations that use
tail-recursion, Convention 3 cannot be used.

In fact, Convention 1 cannot be used either, since there is work to do
after the call returns, namely pop the overflow parameters. Since tail calls
do not return to their caller (but to their caller’s caller) the opportunity to
pop the parameters is lost, which means that tail calls grow the stack. This
breaks the constant space consumption property.

In conclusion, in order to support unrestricted tail call optimisation, C--
must use Convention 2 to pass overflow parameters.

Section 5.2.3 shows how this restriction can be lifted for functions that
satisfy certain conditions.

5.1.2 C-- Continuations

Ramsey and Peyton Jones (2000) have proposed C-- continuations as a
mechanism to support source-language exception handlers in C--.

At run-time, a C-- continuation encapsulates both a control-flow target
and a specific C-- activation on the stack. When a continuation is invoked,

CHAPTER 5. COMPILING C-- 66

all activations above that of the continuation are removed from the call stack
before transferring control to the continuation’s program counter. Once
an activation dies, its continuations die too. Invoking a dead continuation
results in a run-time error. In the following code k is passed to a function,
which can later invoke it.

f(bits64 x, float64 y) {

bits64 w;

...

g(x, k) also cuts to k ;

/* k may be invoked by g, or by something g calls */

...

return;

continuation k(w):

... code for k, mentioning x, y, w ...

}

The annotation also cuts to k at g’s call site indicates that control
might flow from the call directly to k. This allows the code generator to
build an accurate control-flow graph (Hennessy 1981; Choi et al. 1999).

There are two different ways of invoking a C-- continuation: stack cut-
ting and stack unwinding (Ramsey and Peyton Jones 2000). In turn, each
one can be implemented in code generated by the C-- compiler or in code
in C--’s run-time system. This gives a total of four combinations, each with
a different cost model. cmmc supports one of them, stack cutting via gener-
ated code. The statement cut to k(arguments); transfers arguments to
conventional locations,1 truncates the stack to k’s activation, and sets the
program counter to k’s program counter. This is done in constant time,
without walking the call stack.

Notice that if the source language is C++, exception handling cannot
be implemented with C--’s cut to. The semantic of C++ requires that
object destructors be invoked as soon as the dynamic scope of the object
terminates (Stroustrup 1997). When the stack is unwound for exception
handling, activations are removed from the stack, terminating the scope of
their variables. Destructors may have to be invoked at that time. (In order
to support C++, cmmc would have to implement stack unwinding.)

1These locations are determined by the C-- implementation.

CHAPTER 5. COMPILING C-- 67

5.1.3 Run-time Representation of C-- Continuations

At run-time, both a C-- continuation and a source-language exception han-
dler encapsulate a control flow target and a specific activation on the stack.
In addition, each has the property that its life span terminates when its ac-
tivation returns. This suggests that perhaps a C-- compiler can use for C--
continuations the same run-time representation that other compilers use for
exception handlers. However, I will show that this is not possible.

The most space-efficient representation for exception handlers is the fol-
lowing. When the scope of an exception handler is entered, its program
counter is pushed onto the call stack. Then the value of stack pointer itself
serves as the run-time value of the handler. In this representation, a sin-
gle address captures both the stack pointer and the program counter of an
exception handler. This is shown in Figure 5.1.

PC of handler SP,current handler

Figure 5.1: An efficient run-time representation of exception handlers.

When an exception is raised, the code to resume execution at the current
exception handler is simple and efficient:

SP <- current_handler

JMP (MEM[current_handler])

This representation hinges on the fact that, at any one time, there is only
one current exception handler. More precisely, each expression in the scope
of an exception handler has two continuations:2 the normal continuation
(the next instruction after the expression) and the exceptional continuation
(the code of the exception handler). Exception handlers can be nested,
but then the innermost one becomes the current exceptional continuation.
When evaluation leaves the scope of the innermost one, the enclosing one

2Here, the term “continuation” means “the rest of the computation” (Reynolds 1998),
rather than a C-- continuation.

CHAPTER 5. COMPILING C-- 68

becomes current. In other words, every expression has only one exceptional
continuation.

In contrast, in C--, more than one continuation may be current or “ac-
tive” (in the sense that they can be invoked) at one point in the program.
Consider this code:

f() {

...

g(k1, k2) also cuts to k1, k2;

...

continuation k1():

...

continuation k2():

...

}

k1 and k2 are both passed to g, which can invoke either. Therefore, at
the call site both continuations are active. The consequence is that a C--

continuation cannot be represented as compactly as an exception handler.
For each active continuation we must allocate a (program counter, stack

pointer) tuple. The continuation value (of the native data-pointer type) is
the address of the tuple. Since the life of a continuation is at most that
of its activation, the tuple can be allocated in the activation frame of its
enclosing function. Figure 5.2 shows the activation frame of f, containing
the representations of continuations k1 and k2.

Non-nested exception handlers can use a single memory location to store
the value of the current exception handler. Similarly, in C--, two continu-
ations that are not “live” simultaneously can also share the same memory
area. To determine if two continuations are live at the same time the C--

compiler may perform a custom liveness analysis on continuations. How-
ever, cmmc does not implement such analysis and allocates separate memory
in the activation frame for each C-- continuation of a function.

Invoking a Continuation

To cut to a continuation, the following actions must be taken:

1. Pass the continuation arguments.

CHAPTER 5. COMPILING C-- 69

SP of k2

PC of k2

SP of k1

PC of k1

SP

k1

k2

Figure 5.2: Run-time representation of C-- continuations in an activation
of function f.

2. Update the stack pointer.

3. Jump to the continuation code.

cmmc passes continuation arguments in the same registers and stack lo-
cations that it uses to return function results. The translation of cut to to
machine code follows directly from the run-time representation of continua-
tions. Given:

cut to (expr)(args);

expr must point to a (program counter, stack pointer) tuple. (C-- specifies
that it is a run-time error to cut to an expression that does not evaluate to
a C-- continuation. A C-- compiler may emit code that tries to check this
at run-time, but cmmc does not.) To update the stack pointer and jump to
the continuation code, cmmc emits the following low-level code:3

/* evaluate expr into a fresh temporary t */

t <- expr

SP <- MEM[t - 8]

JMP (MEM[t])

Compared to a normal function call, the additional cost is two loads and
an indirect branch instead of a direct one. As a special case, if the target of
a cut to is a continuation of the same function activation, as in this code:

3For an architecture where addresses occupy 8 bytes.

CHAPTER 5. COMPILING C-- 70

f() {

...

cut to k(1);

...

continuation k(arg):

...

}

cmmc emits the optimal code, namely pass the actual parameters and branch
to a label local to f.

arg <- 1

goto f_k

Here, it is assumed that the control flow target of the continuation k is
represented internally by the C-- compiler by the label f_k.

Initialising Continuation Values

When a C-- function is invoked, for each of its local continuations, a tuple
must be allocated in memory and its contents must be initialised before the
continuation may be invoked. (Local invocations do not require initialisation,
though, since they translate to local branches and the stack pointer remains
the same.) There are two reasonable alternatives to initialise a continuation:

• Early, at function entry.

• Lazily, before the continuation can be invoked.

If we initialise the continuation lazily, the initialisation cost (two stores)
is paid only along control paths that actually use the continuation. However,
this can incur redundant initialisations if the same continuation is used more
than once and we initialise before every use. For instance, given the code
in Listing 5.3, k cannot be invoked in the true branch, and there is no
need to initialise in that control-flow path. On the other hand, initialisation
must complete before the call to g. If initialisation is done immediately
before the call, the continuation tuple would be written every time round
the loop. Standard back-end optimisations, like code motion and dead store
elimination, may be able to eliminate some or all of the redundant stores. If

CHAPTER 5. COMPILING C-- 71

the C-- compiler does not implement such optimisations, an alternative is to
initialise each continuation in the dominator of all its uses. cmmc initialises
immediately before each use.

f(bits64 x) {
...
if(...) {
h(10);
return;

} else {
loop:
g(k) also cuts to k;
...
goto loop;

}
...
continuation k(arg):
...

}

Figure 5.3: Continuation k cannot be invoked in the true branch.

5.1.4 Reserved Machine Registers

C-- provides support for assigning global variables to specific machine reg-
isters. C-- global register declarations provide the same functionality as
global register variables in GNU C (Stallman 2001). Common uses of re-
served registers by front ends include:

• Allocation pointer and allocation limit for fast memory allocation in
system where the allocation space is a contiguous region of free memory
(Appel 1998).

• Exception pointer, to hold the current exception handler (Appel 1992).

• Dedicated registers in parts of the run-time system written in assembly
language.

The C-- declaration

register bits64 global_var "r14";

CHAPTER 5. COMPILING C-- 72

has two effects: it allocates variable global_var to register r14, and it re-
serves register r14 globally in the C-- module where the declaration appears.
That is, even in a C-- function that does not mention global_var, register
r14 will not be used to colour local variables.

All separately compiled C-- modules must have identical register dec-
larations. Otherwise, it is impossible to guarantee that all functions use the
same location for a certain global.

register declarations name specific machine registers and are, there-
fore, target-dependent. C-- programs should avoid reserving registers that
are used by the native calling conventions. Typically this includes the stack
pointer, the return address register, and the function result register. But
some native calling conventions reserve more, like a global pointer to imple-
ment position-independent code (Evans and Eckhouse 1999). C-- compilers
should reject programs that try to reserve such registers.

Implementing Reserved Machine Registers

A C-- compiler can implement reserved registers as follows.

1. References to global variables are directly translated to their physical
register, before register allocation.

2. During register allocation, reserved registers are not available to colour
any temporary.

3. Local variables are initially assigned to temporaries. Later, they will
be assigned to available physical registers or memory by the register
allocator.

For instance, this C-- statement:

global_var = global_var + x;

translates to this instruction in low-level intermediate code:

r14 <- r14 + t245

assuming that x gets assigned to temporary t245. Later, the register allo-
cator will assign t245 to a physical register or memory location. This is the
implementation used by the GNU C compiler.

CHAPTER 5. COMPILING C-- 73

5.1.5 A Better Implementation

cmmc uses a smarter implementation of reserved registers, which allows re-
served registers to be used for other variables in parts of the program where
the reserved register is dead.

Consider the following code:

f(bits64 x) {

bits64 y;

y = x+1;

... uses y

global_var = x + 16;

return;

}

Assume that ... uses y is a section of code that has high register pressure
(perhaps an unrolled loop), and that global_var is not mentioned in that
section of code. Because there are more live variables than registers, some-
thing has to be spilled, for instance y. However, it would be harmless to
assign y to register r14! What makes this safe is the fact that global_var

is dead throughout that section of code. Intuitively, if the first thing we do
with a reserved register in a function is assign to it, then that means that we
do not care about its previous value; therefore it is safe to use the register
for other purposes temporarily.

Notice, however, that the same cannot be done for this other function:

f’(bits64 x) {

bits64 y;

y = x+1;

... uses y

g();

global_var = x + 16;

return;

}

because g may consult the current value of global_var. In this case global_var
is live at the same time as y. (The call statement acts as a use of global_var.)

CHAPTER 5. COMPILING C-- 74

cmmc implements reserved registers as follows.

1. References to global variables are directly translated to their physical
register, before register allocation.

2. Reserved registers are available during register allocation to colour
temporaries.

3. When doing liveness analysis of a function, reserved registers are con-
sidered live inside functions called by the current function and after
statements that exit the current function (return, jump and cut to).

4. Local variables are initially assigned to temporaries. Later, they will
be assigned to available physical registers or memory by the register
allocator.

To my knowledge, this method of making reserved registers available
when they are dead is novel.

When a front end reserves a few machine registers, the number of spills
may increase in user programs, since the register allocator has fewer regis-
ters to colour program variables. With the technique described above this
problem is alleviated.

5.2 Optimising C--

The effort of optimising an intermediate language pays over and over every
time a compiler uses the intermediate language to translate a program. In
the case of a language-independent intermediate language like C--, that
might be used by several client compilers, potentially many more source
programs benefit from the optimisations.

This section describes the following optimisations that cmmc implements:

• Efficient calling conventions for known functions.

• Tail-recursion optimisation.

• The use of conditional move instructions.

CHAPTER 5. COMPILING C-- 75

5.2.1 Optimising Parameter Passing

C-- functions are not required to use the native calling convention of the
target architecture. C-- compilers are free to use different registers, or a
larger number of them, for faster function calls (Lueh and Gross 1997).

Where possible, cmmc uses a better calling convention than the native
one. For instance, it uses more machine registers to pass arguments. (Of
course, the native convention must be used for foreign calls and foreign

function definitions.)

5.2.2 Optimising Register Parameters of Known Functions

We say that a function is known when all its call sites can be identified
statically. Otherwise, we say that it is escaping. Some compilers specialise
the calling convention of known functions (Kranz et al. 1986; Appel 1992).
cmmc uses similar techniques. I will first show the code that cmmc emits for
functions that are not known. Then, to illustrate the specialisation of the
calling convention, I will show the code that is emitted for known functions.

Consider the following code, where neither f nor g are known functions:

f(bits64 x) {

...

g(0, x);

...

}

Assume that the calling convention for escaping functions is to pass the
first few parameters in registers starting with register 1. This is the low-level
code that cmmc would produce:

f:

/* copy formal parameter to temporary */

x <- R1

...

/* pass actual parameters in R1, R2 */

R1 <- 0

R2 <- x

call g

...

CHAPTER 5. COMPILING C-- 76

The register allocator will try to coalesce (assign the same register to) a
temporary and a machine register if they are connected by copy instructions
(George and Appel 1996). When this strategy succeeds, the copy instruction
can be deleted. Here, x is connected to both R1 and R2. The allocator can
assign x to either of them, and remove one of the copies. Let us assume that
it selects R2. This results in the following code:

f:

/* copy formal parameter to temporary */

/* x assigned to R2 */

R2 <- R1

...

/* pass actual parameters in R1, R2 */

R1 <- 0

R2 <- R2

call g

...

Now, the copy R2 <- R2 can be deleted.
It is also possible to coalesce two temporaries if they are connected by

copies. If a function is known, cmmc uses temporaries rather than machine
registers for its formal parameters. This exposes even more possibilities for
coalescing than before. For instance, assume that the parameter to f is
passed in temporary tf1, and the parameters to g are passed in tg1 and
tg2:

f:

/* copy formal parameter to temporary */

x <- tf1

...

/* pass actual parameters in tg1, tg2 */

tg1 <- 0

tg2 <- x

call g

...

Now the allocator could coalesce x, tf1 and tg2, and remove two copies
instead of one, to produce this optimal code:

CHAPTER 5. COMPILING C-- 77

f:

...

tg1 <- 0

call g

...

Of course, not only f but all callers of g must use the same temporaries
(tg1 and tg2) as the formal parameters of g.

cmmc uses a simple escape analysis to determine whether a function es-
capes its compilation unit. The analysis is purely syntactic and determines
that a function may escape when:

• Its name is listed in an export declaration, or

• Its name is used in a position other than the name of the callee in
a call or jump statement. This includes its use as a parameter, in a
return, in the right hand side of an assignment, etc.

This analysis is necessarily conservative, but I believe that it provides a
good compromise of cost vs. precision.

5.2.3 Optimising Overflow Parameters of Known Functions

If f is a known function, the following optimisations are possible:

• Convention 3 (Section 5.1.1) can be used if there are only calls and no
jumps to f .

• Convention 3 can be used if every jump to f is from functions f ′i that
use convention 3 themselves and have no fewer overflow parameters
than f . (A caller of any one of the functions f ′i reserves in its frame
enough space to hold f ′i ’s overflow parameters. This space is also large
enough to hold f ’s overflow parameters, since they are no more than
those of f ′i .)

5.2.4 Tail-Recursion Optimisation

Many tail-calls are also tail-recursive (i.e. the callee is the same function as
the caller). For instance, in functional languages iterative computations are
often expressed by recursion.

CHAPTER 5. COMPILING C-- 78

Tail-recursive calls can be compiled more efficiently than ordinary tail
calls. The steps for an ordinary tail call are:

1. Move actual parameters to formal parameters.

2. Restore callee-saves registers.

3. Pop the stack frame of the calling function.

4. Jump to the callee.

A compiler that does not optimise tail-recursive calls would translate
this function

f(bits64 x) {

bits64 y;

y = ...;

...

jump f(x-y);

}

to this low-level code:4

1 f:

2 SP <- SP - 32

3 save callee-saves

4 /* copy formal in R1 to temporary x */

5 x <- R1

6 y <- ...

7 ...

8 /* pass actual parameter in R1 */

9 R1 <- x - y

10 restore callee-saves

11 SP <- SP + 32

12 JMP f

There are some obvious inefficiencies here. First, the stack pointer is
incremented before the branch, only to be decremented by the same amount

4Assume that 32 bytes of space are required in the activation frame to hold local
variables or spilled registers.

CHAPTER 5. COMPILING C-- 79

at the branch target. Similarly, the callee-saves registers are restored and
saved before and after the branch.

Steele was the first to point out that a tail-recursive call can be com-
piled to a “goto with arguments” (Steele 1977). If the compiler performs
tail-recursion optimisation, the inefficiencies with the stack pointer and the
callee-saves registers can be eliminated, resulting in this code:

1 f:

2 SP <- SP - 32

3 save callee-saves

4 RECURSE:

5 /* copy formal in R1 to temporary x */

6 x <- R1

7 y <- ...

8 ...

9 /* pass actual parameter in R1 */

10 R1 <- x - y

11 goto RECURSE

But, in fact, the compiler can emit an even better sequence:

1 f:

2 SP <- SP - 32

3 save callee-saves

4 /* copy formal in R1 to temporary x */

5 x <- R1

6 RECURSE:

7 y <- ...

8 ...

9 /* pass actual parameter in temporary */

10 x <- x - y

11 goto RECURSE

This is essentially the same code that would be generated if the iteration
were expressed with a loop, instead of with recursion.

Notice that if the copy x <- R1 can be deleted by the coalescing phase,
then the final machine code would be identical in both cases. But if x and
R1 cannot be coalesced, the second sequence executes one less instruction in
every iteration.

CHAPTER 5. COMPILING C-- 80

cmmc implements tail-recursion elimination; in particular, it generates
the optimal sequence.

5.2.5 Conditional Moves

Several RISC architectures have special instructions for conditional moves,
which are more efficient that conditional branches. A typical conditional
move instruction has the following format:

R1 <- R2 if cond R3

The semantics is to move the contents of register R2 into R1 if the condi-
tion cond holds for R3. cond is usually limited to simple comparisons with
the value zero (equal to, less than, etc).

For instance, a straightforward translation of this conditional assign-
ment:

if (c==1) {x = y;} else {x = z;}

is the following:

R <- c == 1

if !R goto ELSE

x <- y

goto ENDIF

ELSE:

x <- z

ENDIF:

In target architectures that have conditional move instructions, the fol-
lowing sequence executes faster than the above sequence:

R <- c == 1

x <- y

x <- z if !R

This improved translation is possible only if the alternative assignments
have simple right hand sides and identical left hand sides. The following
conditional assignment can also be translated to an efficient sequence that
uses a conditional move:

if (cond) {x = y;}

CHAPTER 5. COMPILING C-- 81

And so can patterns like the following, where the conditional assignments
are implicit:

if (cond) {f(x);} else {f(y);}

if (cond) {return(x);} else {return(y);}

cmmc emits conditional move instructions for patterns where conditional
assignments are explicit.

Chapter 6

Targeting C--

This chapter describes the use of the C-- infrastructure in two different
compilers. These are the first compiler implementations to use C-- to gen-
erate code. I show that C-- can be used to compile very dissimilar source
languages, C and Caml.

The systems that have been used in the evaluation are lcc (Fraser and
Hanson 1995) and the Caml compiler from INRIA (Leroy et al. 2002).
The two compilers translate very dissimilar intermediate languages into C--.
lcc’s intermediate language is imperative, low-level, and fairly close to C--.
Caml’s intermediate language is functional and has some higher-level con-
structs, like exception handlers. Each translation stresses different aspects
of C--, providing broad coverage overall.

The discussion in this chapter is centered on C and Caml, but the lessons
that have been learnt are general and apply to other languages as well.

The chapter ends with a discussion about the need to generate target-
dependent C-- and how this may increase the complexity of the front end.

6.1 Translating C to C--

The lcc C compiler has proved to be an ideal system for a first evaluation of
C-- as a portable compiler intermediate language. lcc is lean, its source code
is freely available, and its design and implementation are fully documented
in a book (Fraser and Hanson 1995).

Moreover, lcc’s intermediate language (IL) has a very small semantic
gap with C--. The IL representation of a C program makes explicit all things
that are implicit in the source code, but that are specified in the ANSI

82

CHAPTER 6. TARGETING C-- 83

C standard; for example, type conversions when passing parameters and
returning results. By and large, the IL has a very similar structure to C--.
C expressions that have no direct counterparts in C--, such as function calls
and assignments in an expression context, are translated to C-- statements;
structured control-flow statements are lowered to conditional or indirect
branches; and so on.

This structure has allowed me to fit a small generic emitter that trans-
lates lcc’s IL to C--. The emitter consists of 610 lines of C (excluding com-
ments), plus a machine-specific file that describes the sizes and the memory
alignment requirements of the primitive data types.1 This file is around 70
lines of C.

In the rest of this section I describe a few interesting issues that arise
when translating the C language to C--. (Appendix B shows the translation
of additional high-level constructs to C--. It also compares C-- to another
generic intermediate language.)

6.1.1 Indirect gotos and Labels as Values

The first C-- specification included only direct gotos, where the destination
was restricted to be a label in the same function as the goto.

The lcc C-- emitter has exposed that this limitation hinders the emis-
sion of efficient machine code for some common constructs of source lan-
guages. The case selection code for a C switch statement can be imple-
mented with nested conditional branches, or with branch tables. When
there are more than three alternatives, the fastest selection code is a branch
table (Fraser and Hanson 1995). Threaded code interpreters (Bell 1973) also
use branch tables for efficiency.

To build branch tables in C--, we need to be able to store labels in mem-
ory. To branch to a label stored in a table, an indirect goto is necessary. (In
an indirect goto, the branch target is an arbitrary expression of the native
code-pointer type). These are exactly the same as the “labels as values”
feature and the “computed goto” statement of GCC (Stallman 2001).

Labels-as-values and indirect gotos have been subsequently added to the
C-- specification so that branch tables can be implemented.

Unlike a computed goto in GCC, an indirect goto in C-- includes a list of
the possible targets, so that an optimiser does not have to make pessimistic

1See Section 6.3 for a more detailed description of the contents of this file.

CHAPTER 6. TARGETING C-- 84

assumptions about the control flow of an indirect goto. Without this list,
the optimiser might be forced to assume that control may be transferred to
any statement of the function. The assembly language of the IA64 has the
same feature (Tal et al. 1999).

Figure 6.1 shows a trivial C program and its C-- translation by lcc.2 No-
tice the indirect goto (line 15) that lists all potential targets (L1, L2, L3,

L4). Notice also the statically-allocated branch table (line 29). In C--, code
labels have global scope, so that their addresses can be stored into global
branch tables.

6.1.2 In-Memory Locals

C has an “address-of” operator (&) that returns the address where a value is
stored. In C, local variables that have their address taken3 cannot be allo-
cated to machine registers, since registers have no memory address. When
generating C--, lcc allocates such variables not to C-- variables, but to
memory locations in the function’s frame, using stackdata. Any use of
(assignment to) the locals in C is translated to an explicit load from (store
to) the stackdata location in C--.

C variables that are declared volatile are also allocated to stackdata.
(The semantics of C requires that an optimiser does not affect the number
and order of references to a volatile variable (Harbison and Steele 1995,
p. 83).) By allocating them to stackdata instead of C-- variables, we make
sure that the C-- compiler will not place them in registers. This guarantees
that the register allocator will not eliminate references to them (for example
by coalescing (George and Appel 1996)).

Finally, formal parameters that have their address taken must be copied
into local stackdata, and all their uses and definitions must be translated
to explicit loads and stores. In the current C-- emitter every parameter
is copied unconditionally, at function entry, even if the parameter is never
mentioned in the function body. Two better alternatives are the following:

• Insert the copy in the dominator of all uses and definitions of the
2This and subsequent code listings that show the C-- output produced by the front

end have been edited for readability, including added comments, indentation, the names
of local variables and labels, etc. None of the edits alter the number and relative order of
C-- statements.

3In lcc, the information about what variables have their address taken is readily avail-
able in the symbol table built by the front end.

CHAPTER 6. TARGETING C-- 85

1 void f(int i) {
2 int x;
3 switch (i) {
4 case 1: x = 1; break;
5 case 2: x = 2; break;
6 case 3: x = 3; break;
7 case 4: x = 4; break;
8 }
9 }

10

11 foreign "C" f(bits32 i) {
12 bits32 x;
13 if (i < 1) { goto END_SWITCH; }
14 if (i > 4) { goto END_SWITCH; }
15 goto (bits64[TBL + (%zx64(i-1) << 3)]) (L1, L2, L3, L4);
16 /* %zx64 stands for zero-extension to 64 bits */

17 L1: x = 1;
18 goto END_SWITCH;
19 L2: x = 2;
20 goto END_SWITCH;
21 L3: x = 3;
22 goto END_SWITCH;
23 L4: x = 4;
24 END_SWITCH:
25 foreign "C" return();
26 }
27 section ".rdata" {
28 align 8;
29 TBL: bits64{L1,L2,L3,L4};
30 }

Figure 6.1: A C switch statement translated to C-- using indirect gotos.

CHAPTER 6. TARGETING C-- 86

parameter. In this way the copy is executed only in program paths
that reference the parameters. If the parameter is not mentioned in
the body, then no copy is inserted.

• Insert the copy naively at function entry but use a phase of dead-store
elimination to clean up useless stores. In practice this requires good
aliasing information. (See Section 3.1.6.)

Figure 6.2 shows a trivial C function that includes a volatile variable,
and that takes the addresses of a formal parameter and of a local variable.
The C-- code emitted by lcc follows the C code.

Notice that the C local variables z and vol are explicitly allocated to
memory in the C-- translation. They are allocated to stackdata locations
with labels z2 and vol2, respectively.

A memory location is also reserved to copy the parameter x. x is copied
to this memory location at function entry (line 22). In the rest of the
function, x2 is the label of the address where the value of parameter x

is stored. For instance, the assignment of x’s address to ptr1 appears in
line 23. Similarly, z’s address (z2) is assigned to ptr2 in line 24.

All uses of x, z, and vol translate to loads from their addresses.

6.1.3 Tail Call Optimisation in C

Tail calls can be implemented more efficiently than ordinary calls ((Appel
1998, chapter 15), Chapter 5 of this dissertation). Tail calls occur very
frequently in functional languages, and they are not uncommon in C. Clinger
(1998) measured the number of static tail calls and tail-recursive calls in
several Scheme and C programs. His measurements for C are shown in
Table 6.1.

Program Calls Tail calls Tail-Recursive calls
lcc 4492 6.5% 4.2%
jpeg 2122 6.2% 5.4%
grep 656 4.6% 3.7%

Table 6.1: Static frequency of tail calls in C (Clinger 1998).

C calls that appear in tail position can be translated to C-- jump state-
ments, so that the C-- compiler performs tail call optimisation. However, a
C-- jump deallocates the caller’s frame, and in C the contents of the caller’s

CHAPTER 6. TARGETING C-- 87

1

2 void f(int x){
3 int* ptr1, ptr2;
4 int z, i;
5 volatile int vol;
6

7 ptr1 = &x;
8 ptr2 = &z;
9 i = x;

10 i = z;
11 i = vol;
12 return;
13 }
14

15 foreign "C" f(bits32 x) {
16 stackdata { x2: bits32; }
17 bits64 ptr1, ptr2;
18 stackdata { z2: bits32; }
19 bits32 i;
20 stackdata { vol2: bits32; }
21

22 bits32[x2] = x;
23 ptr1 = x2;
24 ptr2 = z2;
25 i = bits32[x2];
26 i = bits32[z2];
27 i = bits32[vol2];
28 foreign "C" return();
29 }

Figure 6.2: Translation of volatile variables into C--.

CHAPTER 6. TARGETING C-- 88

frame can be accessed even after a call in tail position. The caller’s frame
is potentially needed in any of the following cases:

• A pointer to a local variable is passed as an argument to the tail call.
The pointer may be dereferenced by the callee (or by anything it calls).

• A pointer to a local variable has been stored in a global variable before
the tail call, or passed as an argument in a previous call. (I use “before”
and “previous” in the sense of predecessor in the control flow graph.)

• Control may return to the caller after the tail call. In C this can occur
when there has been a call to setjmp previous to the tail call and the
callee (or anything it calls) invokes longjmp.

These situations are considered by C compilers that implement tail-call
optimisation, but unfortunately it is difficult to find published descriptions
of all the possible instances. For the above cases, it is unsafe to translate
a C tail call into a C-- jump. An optimising C compiler targeted to C--

can emit jumps for C calls in tail position if it is able to determine that the
caller’s frame will not be accessed after the tail call. lcc’s C-- backend is
quite simple and does not perform any such analysis. Therefore, it does not
emit jumps.

6.1.4 Unsigned Integer Loads in C--

Several high-level languages, including C, provide signed and unsigned inte-
gers as primitive types. Similarly, the instruction sets of modern architec-
tures include instructions for signed and unsigned arithmetic and memory
loads. For example, the Alpha instruction set provides the instructions ldb
(load byte) and ldbu (load byte unsigned).

An 8-bit unsigned load instruction in an architecture with 64-bit registers
sets bits 8 to 63 of the register to zero. An 8-bit signed load instruction
extends bit 7 (the sign bit) of the loaded value through bits 8 to 63 of the
register. For example, for the C code in Figure 6.3, lcc emits, for the Alpha
architecture, load-byte (ldb) to read c and load-byte-unsigned (ldbu) to
read uc.

While C-- has distinct operators for signed and unsigned arithmetic
operations, it only provides one kind of load operator. To make sure that lcc
targeting C-- emits exactly the same machine instructions, the difference

CHAPTER 6. TARGETING C-- 89

char c;
unsigned char uc;

void f() {
char a;
unsigned char b;

a = c;
b = uc;
return;

}

Figure 6.3: C example that reads signed and unsigned variables.

must be conveyed using other C-- constructs. The most natural way is as
follows:

foreign "C" f() {

bits8 a;

bits8 b;

a = %sx8(bits8[c]); /* sign extend */

b = %zx8(bits8[uc]); /* zero extend */

foreign "C" return();

}

Here, %sx8 and %zx8 are unary operators that perform sign and zero
extension respectively.

A naive C-- compiler would emit for this sequence a load instruction
followed by a sign or zero extend instruction. cmmc recognises the patterns
%sxN(bitsN[addr]) and %zxN(bitsN[addr]), and, where available, emits
the appropriate signed or unsigned load instructions.

In my opinion, however, it would be better if C-- distinguished between
signed and unsigned load operations. This distinction is present in several
compiler intermediate languages, e.g. the ones described in (Muchnick 1997)
and (Fraser and Hanson 1995). A possible syntax for C-- is to qualify
memory references, for example like this: bits8(unsigned)[uc].

CHAPTER 6. TARGETING C-- 90

6.1.5 Unsupported Features of C

Unlike C, C-- does not support functions with variable argument lists. When
lcc’s C-- emitter encounters the definition of a C function whose prototype
has a variable argument list, it emits an error message.

However, a call to a C function with a variable argument list may be
translated to a normal C-- call in some targets. For instance, in the calling
convention of the Alpha, the machine code required to pass parameters is
the same for all calls, irrespective of the prototype of the callee.

In other conventions (for instance the IA64), the parameter passing code
is different for functions with variable argument lists. In these cases, there
might be no C-- sequence that translates to the desired machine code. For
such calls to functions with variable argument lists, lcc’s C-- emitter gen-
erates an error message.

6.2 Translating Caml to C--

The Caml compiler is based on the idea of compilation by transformation
(Kelsey and Hudak 1989; Appel 1992; Peyton Jones 1996). The front end
builds an abstract syntax tree, which is translated to assembly language via
a series of intermediate languages, each one closer to the machine than the
previous one.

Two of these intermediate languages are at a level of abstraction close
to C--: LLFL4 and Mach. LLFL is a low-level, weakly-typed functional
language. During compilation, LLFL is lowered down to Mach, an abstract
machine language similar to three-address code (Aho et al. 1986). Mach

still contains a few fairly high-level constructs, like memory allocation, a
structured if, and a raise operator.

Mach is similar to a low-level C--, but it is machine-specific. It contains a
large core that is machine-independent, plus a few machine-specific instruc-
tions, like push for the x86, or memory barrier for the IA64. This makes
Mach unsuitable as the intermediate language to translate to C--. Thus,
LLFL is the natural intermediate language to translate to C--.

4Low-level Functional Language. In the compiler sources, this language is actually
named C--. I will call it LLFL to avoid confusion.

CHAPTER 6. TARGETING C-- 91

6.2.1 Translating LLFL into C--

There is no formal definition of the LLFL language, just a datatype in the
sources of the Caml compiler. Some salient characteristics of LLFL are the
following:

• The only syntactic category is expression; there are no statements.
The syntax is based on prefix application. (It is like the syntax of
LISP’s S-expressions.)

• LLFL expressions are like those found in untyped functional inter-
mediate languages of other compilers: let bindings, function appli-
cations, operator applications, if expressions, literals, memory loads
and stores, etc.

• The only explicit types are those of the formal parameters of functions
and the results of function applications.

• Applications of functions and operators can be nested. For instance,
f(g(x)) and (x+y)*z are allowed.

• Operators include arithmetic, bit manipulation, and integer/floating-
point conversions.

• Higher-level expressions include try, raise (to handle and raise ex-
ceptions, respectively), alloc (to allocate memory), checkbound (to
check array bounds), and loop (to iterate).

• Function definitions cannot be nested.

In summary, the semantic gap with C-- is moderate, making the trans-
lation non-trivial, but still manageable. I will describe in some detail those
aspects of the translation of LLFL to C-- that require careful design. They
are:

• Translating LLFL tail calls into C-- jumps.

• Translating LLFL expressions to C-- statements.

• Inferring C-- types for LLFL variables and for temporaries created
during the translation.

CHAPTER 6. TARGETING C-- 92

• Identifying heap pointers for garbage collection.

• The translation of exception raising and handling.

I address the first four points in the remainder of this section. The
translation of exceptions is described in Section 6.2.3.

Translating LLFL Tail Calls

Function applications in tail position are translated to C-- jump statements.
For instance, this function definition in source Caml:

let f x y = (if x > y then x else g y)

is translated to the following C--5:

f(bits64 x, bits64 y) {

if (x > y) {

return(x);

} else {

jump g(y);

}

}

Unlike in C, all LLFL function applications in tail position can be safely
translated to C-- jumps. It cannot be the case that the caller’s frame con-
tains a memory cell that may be accessed after the call. (Recall that Sec-
tion 6.1.3 discussed the limitations for C.)

The translation is syntax-directed. When a function application appears
in tail position, a jump is emitted. For any other expression in tail position,
a return is emitted.

From LLFL Expressions to C-- Statements

In general, when translating a language with rich expressions (like a func-
tional language) to a language of simple expressions and statements (like
C--), complex subexpressions must be evaluated by statements in the target
language. The results of the evaluation of the subexpressions are temporarily
stored in variables. Most importantly, the order of evaluation of expressions

5A 64-bit architecture is assumed in this example.

CHAPTER 6. TARGETING C-- 93

must be preserved in the translation to C--. For instance, consider this Caml
function definition:

let f x y z = max (g x) (if x > y then y else z)

Its representation in LLFL is as follows:

function f (x: addr, y: addr, z: addr) =

(max

((g x): addr)

(if (> x y) y z)

): addr

To translate this function definition to C--, the following must be done:

1. The function application g x must be emitted as a statement, and its
result stored in a C-- variable.

2. Similarly for the expression if x > y then y else z.

Here is the result of the translation into C--:

f(bits64 x, bits64 y, bits64 z) {

bits64 t1;

if (x > y) {

t1 = y;

} else {

t1 = z;

}

bits64 t2;

t2 = g(x);

jump max(t2, t1);

}

The order of evaluation may look incorrect (the if expression is evalu-
ated before the function call), but the Caml language specification does not
impose a left-to-right order. In order to support efficient partial applications
of functions, the Caml compiler emits code that evaluates subexpressions
right-to-left (Leroy 1990), and I have chosen to follow the same convention
in the translation to C--.

The translation from the functional language to C-- is a variation of
the A-normalisation algorithm (Flanagan et al. 1993). A-normalisation is

CHAPTER 6. TARGETING C-- 94

a source-to-source transformation for functional languages that names all
intermediate results and makes control flow explicit. The resulting program
can be easily translated to a low-level language like three-address code, or
C--. For instance, this function definition:

let f x y = x * g(x) + y

looks like this after A-normalisation:

let f x y =

let t1 = g(x) in

let t2 = x * t1 in

t2 + y

I have implemented a variant of the algorithm of Flanagan et al. (1993).
In this variant, the results of expressions with no side effects are not given
names, and thus the example above is A-normalised to this code:

let f x y =

let t1 = g(x) in

(x * t1) + y

This variant of A-normalisation produces expression trees, rather than
three-address code. This facilitates certain back-end optimisations that work
better on expression trees than on three-address code. For instance, instruc-
tion selection based on tree pattern matching can identify complex patterns
that match CISC instructions (Appel 1998). Indeed, several architectures
have multiply-and-add instructions, which match nicely with the code in the
example shown above. Also, there exist optimal algorithms for instruction
selection (Pelegŕı-Llopart and Graham 1988; Ertl 1999) and register alloca-
tion (Sethi and Ullman 1970) for expression trees. (They take advantage of
the fact that subexpressions can be computed in any order.)

The C-- emitter in fact A-normalises the LLFL code on-the fly, as it
emits C--. Perhaps the implementation might be more clear if done as
a separate pass of A-normalisation, followed by translation to C--. The
resulting C-- code would be the same in either case, though.

Type Inference

In LLFL only formal parameters and the results of function application have
explicit types. let-bound variables and temporaries generated during the
translation to C-- need an explicit declaration in C--, including a type.

CHAPTER 6. TARGETING C-- 95

A local type inference pass is required during the translation of LLFL to
C--. The inference pass is syntax-driven. The type of a function application
is given explicitely in LLFL; the type of an if expression is the type of the
true and false subexpressions; the type of a binary operator application is
the type of its operands; etc. For instance, this Caml code:

let f x y = g (if x > y then x else h x)

is translated to the following C-- code:

f(bits64 x, bits64 y) {

bits64 t;

if (x > y) {

t = x;

} else {

t = h(x);

}

jump g(t);

}

The temporary t was generated in the translation to C--, and a type
was inferred for it.

Identifying Heap Pointers for Garbage Collection

The C-- emitter marks in the program text those arguments and local vari-
ables that correspond to heap pointers in the Caml program. Marking is
done using the keyword gc_root, as described in Section 4.5. For instance,
for this Caml fragment:

let f xs =

let tail = List.tl xs in ...

the following C-- code is generated:

f(bits64 gc_root xs){

bits64 gc_root tail;

tail = List_tl(xs);

...

}

Here, both xs and tail are pointers to cons-cells, which are heap-
allocated.

CHAPTER 6. TARGETING C-- 96

6.2.2 Exceptions and Exception Handling in Caml

Exceptions in Caml are first-class values of type exn. They are declared with
the keyword exception followed by a constructor declaration. For instance,

exception Division_by_zero,

or

exception Error of string.

To throw an exception, Caml provides raise. To handle an exception,
the try expression is used:

try expr with handler

Where handler has this form:

pattern1 -> expr1 | ... | patternn -> exprn

We say that expr is the expression protected by the handler. Evaluation
of the try expression first evaluates expr and returns this value if the evalu-
ation of expr does not raise any exceptions. If the evaluation of expr raises
an exception, the exception value is matched against the patterns pattern1,
. . . , patternn, in order. If the matching against patterni succeeds, the asso-
ciated expression expri is evaluated, and its value becomes the value of the
whole try expression. If none of the patterns matches the value of expr, the
exception value is raised again (Leroy et al. 2002). During the evaluation
of expr we say that control is inside the scope of the handler.

Caml Implementation of Exception Handling

The Caml compiler implements exception handling as follows. An exception
handler encapsulates a program counter (that of the handler’s code) and
a stack pointer (the activation where the scope of the handler is entered).
Nested exception handlers are implemented using a stack of handlers. When
control enters the scope of a handler, this handler is pushed onto the handler
stack. We say that this is the current handler. When control leaves the
scope of a handler, the handler is popped from the stack. (The stackability
of exception handlers is folklore knowledge among language implementors,
and it has been proven formally recently (Polakow and Yi 2001).)

Caml implements the stack of exception handlers as a linked list, with
its elements stored in the activation frames of the functions that install
handlers. For instance, given this code fragment:

CHAPTER 6. TARGETING C-- 97

let f x = ... try g(x) with Division_by_zero -> 0 ...

Figure 6.4 depicts the call stack during an invocation of f, at the point
where the handler has been pushed, but before g has been called. No-
tice in particular that the stack pointer and the top of the handler stack
(curr_handler) coincide. That is, curr_handler captures both an activa-
tion (a stack pointer) and a program counter.

f’s activation

PC of handler

PC of handler

SP
curr_handler

Figure 6.4: Stack of Caml handlers implemented as a linked list in the call
stack.

To raise an exception, the stack is cut to the activation of the current
handler (the topmost one on the handler stack) and control is transferred
to the program counter of that handler. Additionally, the topmost handler
is popped from the handler stack.

Cost Model of the Caml Implementation

The cost of this implementation is as follows. Raising an exception takes
constant time (adjust the stack pointer and transfer control). Entering or
leaving the scope of a handler has a small (constant) cost: that of pushing
and popping the handler onto the handler stack. Additionally, stack cutting
imposes an indirect cost. In a try expression such as this:

try f() with handler

CHAPTER 6. TARGETING C-- 98

if an exception is raised during the evaluation of f(), the values of any
callee-saves registers that have been modified in f() (or anything it calls)
are not restored when control reaches the handler. Stack cutting reduces
the utility of callee-saves registers. More specifically:

• A function that contains a try expression must save all the callee-
saves and restore them when it returns (or makes a tail call). This can
be expensive.

• If the expression protected by the handler includes function calls (the
most common case), all local variables that are live into or across
the handler cannot be assigned to callee-saves registers (Ramsey and
Peyton Jones 2000). They cannot be assigned to caller-saves registers
either, because these may be overwritten by the call. Therefore these
variables must be spilled to memory.

In part because of this, the Caml compiler uses all registers as caller-
saves. (Other reasons are: using callee-saves registers makes stack scanning
more complex (Peyton Jones et al. 1999); frequent tail calls also reduce the
utility of callee-saves registers (Peyton Jones and Ramsey 1998).)

Ramsey and Peyton Jones (2000) describe the cost models of two other
exception handling mechanisms (run-time stack unwinding and native-code
stack unwinding).

6.2.3 Caml Exceptions in C--

I have implemented Caml exceptions in C-- in the same way that the native
Caml compiler does. More specifically, a stack of handlers is maintained,
also implemented as a linked list; a machine register is reserved to point to
the topmost handler. Each handler is represented by a C-- continuation.

Figure 6.5 depicts a situation like the one in Figure 6.4, where the ac-
tivations in the call stack contain the linked list of C-- continuations. As
Figure 6.5 shows, compared to the native Caml compiler implementation
of handlers, using C-- continuations to implement handlers is slightly more
expensive. Continuations take up one more word of storage and incur an
extra indirection. A precise comparison of the costs of exceptions in the two
implementations is given in Chapter 7.

CHAPTER 6. TARGETING C-- 99

curr_continuation

PC of continuation
SP of continuation

activation

PC of continuation
SP of continuation

activation

SP

Figure 6.5: Stack of C-- continuations implemented as a linked list in the
call stack.

Translation of raise

To raise an exception, we pop the topmost C-- continuation from the con-
tinuations stack, and cut to it, passing the exception as the argument. The
translation of the expression raise e is C-- code with the following struc-
ture:

k <- pop continuations_stack

cut to (k)(e);

For instance, consider this simple Caml function:

let f ex = raise ex

All this function does is raise its argument (which must be of type exn).
This gets translated to the C-- code of Figure 6.6. There, curr_continuation
is a global variable held in a reserved register.

Translation of Exception Handlers

Exception handlers in Caml are lowered into a more primitive construct in
LLFL:

CHAPTER 6. TARGETING C-- 100

f (bits64 ex) {
bits64 k;

/* k = topmost continuation */

k = bits64[curr_continuation + 8];
/* pop continuation */

curr_continuation = bits64[curr_continuation];
cut_to (k)(ex);

}

Figure 6.6: C-- code for raise.

TRY(expr, exn, handler)

Here expr is the expression protected by the exception handler, exn is a fresh
identifier that appears free inside handler, and handler is an expression
equivalent to this:

if exn matches pattern1 then expr1

...

else if exn matches patternn then exprn

else raise exn

The translation need not be nested conditions; sometimes, a switch expres-
sion with the same semantics is emitted by the Caml front end.

The above TRY expression is translated to C-- code that has the following
structure:

push continuation k

evaluate expr

pop continuation

bits64 exn;

continuation k(exn):

statements for handler

To “push” a continuation, the C-- emitter allocates a tuple (link, con-
tinuation) in the activation (with stackdata). This tuple holds the contin-
uation and a link to the previous topmost continuation.

CHAPTER 6. TARGETING C-- 101

stackdata {

previous: bits64;

cont: bits64;

}

This space can be reused for all unnested TRY expressions, but if there is a
nested TRY inside expr, the front end must allocate a separate stackdata

area.

A Larger Example

I will now show a more elaborate try expression in Caml and its full trans-
lation to C--.

let f x y = try (g(); h x) with Division_by_zero -> x | _ -> y

The function f returns the value returned by h x if no exceptions are
raised during the evaluation of g(); h x. Otherwise, it returns x if there
was a division by zero, or y if any other exception was raised.

If an exception is raised, it is first matched against Division_by_zero;
if it matches, x is returned. Otherwise, the exception matches the wildcard
_, and y is returned.

This is translated to the C-- code shown in Figure 6.7. (For conciseness,
the code that matches exn with the representation of Division_by_zero is
omitted.)

Control-Flow Annotations

In the translation to C--, every function call in the expression protected by
a handler is annotated with also cuts to, even if some of them may not
raise an exception. (In Figure 6.7, the calls g() and h(x) are annotated.)

The results of a static exception analysis (Leroy and Pessaux 2000) can
be used to determine more precisely what functions may raise what excep-
tions, in order to eliminate unnecessary also cuts annotations.

6.3 Generating Target-dependent C--

C-- is not a “write-once, run anywhere” language. Things like the size of a
data pointer vary from target to target and front ends must emit C-- code

CHAPTER 6. TARGETING C-- 102

1 /* reserved machine register to point to topmost

2 continuation */

3 register bits64 curr_continuation 15;
4

5 f (bits64 x, bits64 y) {
6 stackdata {
7 previous: bits64;
8 cont: bits64;
9 }

10

11 /* push continuation k */

12 bits64[previous] = curr_continuation;
13 bits64[cont] = k;
14 curr_continuation = previous;
15

16 g() also cuts to k;
17 bits64 t;
18 t = h(x) also cuts to k;
19

20 /* pop continuation k */

21 curr_continuation = bits64[curr_continuation];
22

23 return(t);
24

25 bits64 exn;
26 continuation k(exn):
27 if (... /* exn matches Division_by_zero */) {
28 return(x);
29 } else {
30 return(y);
31 }
32 }

Figure 6.7: Exception handling code in C--.

CHAPTER 6. TARGETING C-- 103

with target-dependent sizes and alignments. For instance, consider this C
function definition:

void f(long index) {

long vector[7];

vector[index + 2] = 0;

return;

}

It is translated by lcc’s C-- back end to the following Alpha-specific C--

code:

foreign "C" f(bits64 index) {

stackdata {

align 8;

vector: bits64[7];

}

bits64[vector + (index * 8) + 16] = 0;

foreign "C" return();

}

The Alpha is a 64-bit architecture, and the Alpha convention specifies
that longs are 64-bit wide. For best performance, a vector of longs is
aligned on an 8-byte boundary.

The same C code is translated by lcc’s back end to the following x86-
specific C-- code:

foreign "C" f(bits32 index) {

stackdata {

align 4;

vector: bits32[7];

}

bits32[vector + (index * 4) + 8] = 0;

foreign "C" return();

}

Notice that sizes, alignments and array indexing expressions are different.
The x86 is a 32-bit architecture and lcc chooses to represents longs by 32
bits here.

CHAPTER 6. TARGETING C-- 104

Running a C-- program emitted for a 64-bit architecture on a 32-bit
architecture may produce wrong results. In fact, the program may even be
rejected by the C-- compiler altogether.

Some people have expressed concern that this might be a disadvantage
of C-- compared to C as a target language. However, my experience in
targeting lcc and the Caml compiler to C-- has shown that sizes and align-
ments of primitive types can be easily dealt with by having a very simple
target machine description.

It is common to use such descriptions in compilers that emit code for
several target architectures. For instance, lcc uses type metrics to describe
the size and alignment of primitive C types in each architecture (Fraser and
Hanson 1995, chapter 5). All lcc’s back ends (including the C-- back end)
use the type metrics to emit target-specific code. For instance, here is the
description of C types that lcc uses for the Alpha processor:

Interface alphaIR = {

1, 1, 0, /* char */

2, 2, 0, /* short */

4, 4, 0, /* int */

8, 8, 0, /* long */

8, 8, 0, /* long long */

4, 4, 1, /* float */

8, 8, 1, /* double */

8, 8, 1, /* long double */

8, 8, 0, /* T * */

0, 1, 0, /* struct */

...

}

The first column is the size of the data in bytes. The second column gives
the minimum alignment in memory. For instance, ints occupy 4 bytes and
must be aligned to an address multiple of 4. The third column says whether
literals of the corresponding type are valid as instruction operands. (For
instance, in the Alpha, floating-point literals are invalid.) This column is
ignored by the C-- emitter, since it only makes sense for back ends that
emit assembly language.

The main inconvenience is that a machine description must be created
for every architecture that is supported by the compiler. However, this is a

CHAPTER 6. TARGETING C-- 105

one-time task, and it can be automated with the aid of configuration tools
(Vaughan et al. 2000).

6.4 Targeting the Caml RTS to C--

I have retrofitted the Caml garbage collector to use the C-- run-time inter-
face. Only the function that scans the stack for roots had to be changed. All
the rest remained exactly the same. This includes object allocation, man-
agement of free space, pointer chasing, etc. The modified garbage collector
is similar to what is described in Chapter 4, with a change that I explain
here.

Caml has a foreign function interface, which allows Caml functions to
call C functions, and callbacks from C to Caml (Leroy et al. 2002). Caml
code and C code execute in the same stack. Recall from Chapter 4 the code
of a garbage collector targeted to C--, in the case of a call stack that may
contain foreign activations:

1 cmm_activation_T act;

2

3 cmm_top_activation(&act);

4 for (;;) {

5 <scan activation act>

6 if (cmm_callers_activation(&act) == 0) {

7 /* Caller is not a C-- function. Reached bottom of

8 a sequence of C-- activations. Move to previous

9 C-- sequence, if any */

10 cmm_saved_activation(&act) || break;

11 }

12 }

Recall also that cmm_saved_activation initialises activation handle act

from information stored in a stack of saved C-- contexts.
In Caml, foreign calls and callbacks take place via stubs in the Caml

run-time system, which already maintains its own stack of saved Caml con-
texts. The Caml RTS targeted to C-- uses that stack, and there is no need
to build the C-- one (with cmm_push_state, as described in Chapter 4). To
find pointers in the call stack, the following code is used:

CHAPTER 6. TARGETING C-- 106

1 cmm_activation_T act;

2

3 cmm_top_activation(&act);

4 for (;;) {

5 <scan activation act>

6 if (cmm_callers_activation(&act) == 0) {

7 /* Caller is not a C-- function. Reached bottom of

8 a sequence of C-- activations. Move to previous

9 C-- sequence, if any */

10 void *sp, ret_addr;

11 sp = cmm_callers_sp(&act);

12 ret_addr = CamlSavedRetAddr(sp);

13 sp = CamlSavedSp(sp);

14 cmm_set_activation(&act, ret_addr, sp) || break;

15 }

16 }

This code uses the following function from the C-- run-time interface
that was not described in Chapter 4:

int cmm_set_activation(cmm_activation_T *act, void *gc_point,

void *sp)

cmm_set_activation initialises an activation handle from saved values of a
stack pointer and a return address. This is similar to what
cmm_saved_activation does, except that the values of the saved callee-
saves registers are not provided. Therefore, it is only safe to use
cmm_set_activation if the code generated by the C-- compiler uses no
callee-saves registers.

Callee-saves registers are not too effective for code that contains many
tail calls and sets exception handlers often, which is the case in Caml pro-
grams. In addition, callee-saves registers incur some cost during garbage
collection (the collector must keep track of them as it moves from one ac-
tivation to the next) and when foreign functions are called (they must be
saved away before a foreign call). For these reasons, the Caml compiler
emits machine code that does not use any callee-saves registers.

cmmc provides a command-line switch to request that code be emitted
that uses no callee-saves registers. The Caml front end uses this facility.

Chapter 7

Evaluation

This chapter presents an evaluation of the C and Caml compilers that have
been re-engineered to use C-- in the back end, as described in Chapter 6.

7.1 Compiler Construction Using C--

The main benefit of using the C-- infrastructure to build a compiler is
the reduced implementation cost. It is much easier to write and debug a
C-- emitter than a complete code generator. In addition, the C-- code
generation infrastructure can be used in multiple compilers, which allows to
leverage improvements to the C-- compiler and reduces maintenance costs.

lcc’s back end for the alpha consists of 9 files, totalling 4740 lines of code
(LOC). This includes a code-generator generator but excludes the instruc-
tion selection module that is automatically generated by the code-generator
generator. lcc’s C-- emitter consists of 2 files, totalling 680 LOC. Caml’s
back end for the alpha consists of 30 files and 5010 LOC. This includes in-
struction selection, register allocation and assembly code generation. Caml’s
C-- emitter consists of 2 files, totalling 1850 LOC. The semantic gap be-
tween the intermediate language and C-- is larger in the Caml compiler and
this accounts for the larger size of the emitter. Table 7.1 summarises these
figures.

The actual savings are, in fact, substantially larger than what these
numbers suggest. Line count is a very crude measurement of implementation
cost and, when comparing compiler back ends, it does not do justice to the
real effort behind the implementation. Register allocators are notoriously
difficult to debug. Implementing an instruction selector and an assembly

107

CHAPTER 7. EVALUATION 108

lcc lcc/C-- Caml Caml/C--
files 9 2 30 2
LOC 4740 680 5010 1850

Table 7.1: Size of the back end.

code emitter requires much more effort and attention to low-level detail
than writing a C-- emitter.

7.2 Performance Evaluation

A number of C and Caml programs were compiled with lcc (version 4.1)
and the Caml compiler (version 3.01) respectively, and then with the same
compilers targeting C--. The resulting C-- code was translated to assembly
language by cmmc, and the system assembler and linker were used to generate
executable programs. Only the code of the benchmarks was compiled via
C--; the standard libraries were not recompiled. For the Caml/C-- compiler,
the garbage collector was modified as described in Section 6.4.

All programs where run with inputs large enough so that the resulting
running times were significant. Times were measured with the UNIX time

command and rounded to the nearest hundredth of a second. Each program
was run three times; the highest time was discarded and the reported time
is the arithmetic average of the other two measurements.

7.2.1 C Benchmarks

Table 7.2 contains brief descriptions of the C programs that have been eval-
uated. tsp is from a set of freely-available benchmarks; qsort is part of
lcc’s test suite; compress and go are from the SPEC95 suite (All the other
C programs in SPEC95 contain functions with variable numbers of argu-
ments, which are not supported by C--.); all the rest are from the SPEC2000
suite.

The C programs were run on a lightly-loaded Alpha running Digital
UNIX V3.2C. To have an additional data point, the C programs were also
compiled with gcc (version 2.7.2.1), using optimisation level -O3.

Table 7.3 shows the execution times, and Figure 7.1 displays them nor-
malised with respect to the lcc results. The size of the code generated by

CHAPTER 7. EVALUATION 109

tsp Solve the travelling salesman problem.
qsort Initialise and then sort an array of integers.
compress Compress and decompress files in memory.
go Play the game of “Go”.
gzip Compress and decompress files in memory.
vpr Placement and routing of integrated circuits.
mcf Combinatorial optimisation of vehicle scheduling.
crafty Solve chess board layouts.
parser Syntactic parser of English.
gap Solve group theory problems.
vortex Object-oriented database transactions.
bzip2 Compress and decompress files in memory.
twolf Placement and routing of integrated circuits.

Table 7.2: Description of C benchmarks.

lcc/C-- is 5% smaller on average than what lcc generates.

Analysis

The results of the C benchmarks are as expected. lcc has a simple back end
that does not include many optimisations (Fraser and Hanson 1995). cmmc,
on the other hand, uses MLRISC as its code generator, which implements
more optimisations than lcc’s back end. In particular, MLRISC comes
with a sophisticated register allocator (George and Appel 1996). As a re-
sult, programs compiled with cmmc spill substantially less and contain fewer
copy instructions than when compiled with lcc. Also, cmmc does better
instruction selection than lcc and performs simple peephole optimisations
after register allocation.

gcc with optimisation level -O3 performs a number of optimisations that
are not implemented by lcc nor cmmc, including global common subexpres-
sion elimination, loop strength reduction, loop unrolling, a second pass of
instruction scheduling after register allocation, and many more. The com-
bined effect of all these optimisations accounts for the differences in execu-
tion times that have been measured.

7.2.2 Caml Benchmarks

Table 7.4 contains brief descriptions of the Caml benchmarks.

CHAPTER 7. EVALUATION 110

lcc lcc/C-- Ratio gcc -O3 Ratio
tsp 2:21.17 2:17.09 .97 1:56.85 .83
qsort 38.96 30.99 .80 28.10 .72
compress 20:36.18 18:17.96 .89 13:02.37 .63
go 7:25.97 5:56.11 .80 4:01.44 .54
gzip 2:09:30.04 1:47:09.50 .83 1:28:06.19 .68
vpr 1:41:57.92 1:28:41.72 .87 1:11:22.34 .70
mcf 2:29:36.39 2:01:11.23 .81 1:35:45.56 .64
crafty 1:13:34.08 1:06:12.67 .90 52:14.42 .71
parser 3:01:31.18 2:34:17.50 .85 2:03:26.22 .68
gap 1:43:14.74 1:23:37.73 .81 1:18:28.65 .76
vortex 2:04:02.42 1:37:59.52 .79 1:21:52.56 .66
bzip2 1:43:49.17 1:25:07.92 .82 1:14:45.38 .72
twolf 3:52:07.87 3:17:18.75 .85 2:21:36.48 .61

Table 7.3: Execution times of C benchmarks (hours:minutes:seconds).

bdd Solve a binary decision diagram problem.
boyer Verify a proof with the Boyer-Moore theorem prover.
fft Solve a fast Fourier transform problem.
quicksort Initialise and then sort an array of integers.
xml Parse an XML document and make multiple traversals.
exceptions Raise and catch exceptions.

Table 7.4: Description of Caml benchmarks.

CHAPTER 7. EVALUATION 111

1.
00

.9
7

.8
3

ts
p

1.
00

.8
0

.7
2

qs
or

t
1.

00
.8

9
.6

3
co

m
pr

es
s

1.
00

.8
0

.5
4

go
1.

00
.8

3
.6

8
gz

ip
1.

00
.8

7
.7

0
vp

r
1.

00
.8

1
.6

4
m

cf
1.

00
.9

0
.7

1
cr

af
ty

1.
00

.8
5

.6
8

pa
rs

er
1.

00
.8

1
.7

6
ga

p
1.

00
.7

9
.6

6
vo

rt
ex

1.
00

.8
2

.7
2

bz
ip

2
1.

00
.8

5
.6

1
tw

ol
f

0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
al

is
ed

 e
xe

cu
ti

o
n

 t
im

e

Legend

lcc
lcc/C--
gcc -O3

Figure 7.1: Normalised execution times of C benchmarks.

CHAPTER 7. EVALUATION 112

The first four benchmarks are part of the Caml test suite. exceptions

is a synthetic benchmark that raises and catches exceptions. The intention
of the exceptions benchmark is to try to measure the overhead of imple-
menting Caml exception handlers using C-- continuations. The complete
code of exceptions is shown in Figure 7.2.

exception E of int

let g x = raise (E x)

let rec f x =
try
if x > 0 then g x else (Printf.printf "done\n"; 0)

with E n ->
f (x-1)

let _ = f 40000000

Figure 7.2: Code of exceptions benchmark.

The Caml programs were run on a lightly-loaded Alpha running RedHat
Linux 6.1 (kernel version number 2.2.13-0.9).

Table 7.5 shows the execution times, and Figure 7.3 displays them nor-
malised with respect to the times of the native Caml compiler for the Alpha.
The size of the code generated by Caml/C-- is less than 1% larger on average
than what the Caml compiler generates.

Caml Caml/C-- Ratio
bdd 16.25 18.68 1.15
boyer 25.73 26.28 1.02
exceptions 15.05 18.01 1.20
fft 22.20 24.03 1.08
quicksort 37.56 54.55 1.45
xml 47.04 51.27 1.09

Table 7.5: Execution times of Caml benchmarks (seconds).

CHAPTER 7. EVALUATION 113

1.
00

1.
15

bdd

1.
00 1.
02

boyer

1.
00

1.
20

exceptions

1.
00

1.
08

fft

1.
00

1.
45

quicksort

1.
00

1.
09

xml
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

N
o

rm
al

is
ed

 e
xe

cu
ti

o
n

 t
im

e

Legend

Caml
Caml/C--

Figure 7.3: Normalised execution times of Caml benchmarks.

CHAPTER 7. EVALUATION 114

Analysis

A number of factors account for the slower execution times of the Caml
compiler targeting C-- vs. the Caml compiler using its own back end. I
list below the ones for which I have evidence, but there may be more. The
order in the list does not reflect the relative weight of each item because it
is difficult to charge a precise percentage of the total overhead to any single
item.

Allocation Merging

Caml allocates memory for dynamic objects from a contiguous region of free
memory. An allocation limit points to the end of the free region, and an
allocation pointer points to the last allocated memory cell. A function in
the run-time system implements allocation like this:

void alloc_mem(int size) {

retry_allocation:

alloc_ptr = alloc_ptr + size;

if (alloc_ptr > alloc_limit) {

gc();

goto retry_allocation;

}

}

The cost of one allocation when enough free memory is available is the
following: a function call, an add instruction, a comparison, a conditional
branch (which is expensive in current architectures), and a function return.1

Functional languages allocate memory at very fast rates (Diwan et al.
1995), and it is important to minimise the costs of allocation. When more
that one allocation is requested in the same basic block, it is profitable to
combine them into a single allocation. The Caml compiler has an optimisa-
tion phase that does precisely that.

For instance, this Caml expression:

let l = x::y::zs in ...

1The compiler inlines calls to alloc_mem when the option “optimise for space” is se-
lected.

CHAPTER 7. EVALUATION 115

is translated by the Caml compiler to this LLFL code:

let l = alloc(x, alloc(y,zs)) in ...

This code allocates and initialises two new cons cells.2 This is subsequently
translated to this code in the Mach intermediate language:

t = alloc_mem(8 + 8) (* sizeof(y) + sizeof(zs) *)

[t-...] = y

[t-...] = zs

l = alloc_mem(8 + 8) (* sizeof(x) + sizeof(t) *)

[l-...] = x

[l-...] = t

...

In the Mach language allocation is already separated into two more primitive
actions: request free memory and store values into that memory. After the
phase that combines allocations, the following code results:

t = alloc_mem(8 + 8 + 8 + 8)

[t-...] = y

[t-...] = zs

l = t - (8 + 8)

[l-...] = x

[l-...] = t

...

Here, the first allocation requests memory for two cons cells and the second
call to alloc_mem has been substituted by a simple subtraction.

The C-- back end for Caml performs a direct translation of LLFL code to
C--, and merging of allocations has not been implemented. Unfortunately,
the LLFL code is not in the “appropriate” form to perform this optimisation,
since a notion of basic block is required—allocations can be merged only if
they occur in the same basic block. Mach code is the ideal intermediate
language for allocation merging, but this is too late in the pipeline. (Recall
from Section 6.2 that translation to C-- must be from a higher-level inter-
mediate language than Mach, since Mach code is machine-dependent and

2Cons cells (and all other heap objects) contain an extra integer field, a garbage col-
lection header, which I have omitted for presentation purposes. This header describes to
the garbage collector the location of pointers in the allocated object. In this example the
code that is actually emitted is alloc(2048,x,alloc(2048,y,zs)).

CHAPTER 7. EVALUATION 116

some of its constructs cannot be expressed in C--.) A-normalised (Flanagan
et al. 1993) LLFL code could serve as the input of an allocation merging
pass before translation to C--.

Accuracy of garbage collection

The gc-descriptors emitted by cmmc are type-accurate, but not liveness-
accurate (Agesen et al. 1998). That is, only actual pointers are included in
gc-descriptors, but a pointer that is dead at a gc-point may end up in the
gc-descriptor for that gc-point.3 This inaccuracy may prevent some garbage
from being reclaimed early. This can increase the frequency of garbage
collection. It can also make each garbage collection take longer, because
more objects have to be copied.

In contrast, the gc-descriptors emitted by the native Caml back end are
both type- and liveness-accurate.

Instruction scheduling, memory alignment of branch targets and
register allocation

The amount of slowdown of quicksort (45.23%) was unexpected. A visual
inspection of the generated C-- revealed no obvious inefficiencies except
some unreachable code (a branch immediately followed by another branch).
Fixing the C-- emitter to avoid this resulted in no measurable improvement,
though. Inspection of the generated assembly language shows that the main
differences between cmmc and the native Caml compiler are better instruction
scheduling, inclusion of alignment directives for branch targets, and fewer
spills and reloads.
Instruction scheduling. The Caml code generator performs a simple
pass of instruction scheduling within basic blocks (Muchnick 1997). cmmc

does not currently implement scheduling. In some programs, scheduling can
reduce execution time by a few percent points. In quicksort, this figure is
3.6%.4

Alignment of branch targets. In modern microprocessors, branches gen-
erally execute faster if the branch target falls on the start of a cache line.

3This is a limitation of the current implementation of cmmc. It is not caused by the
use of C-- as an intermediate language.

4This was measured by disabling instruction scheduling in the Caml compiler and
comparing execution times.

CHAPTER 7. EVALUATION 117

Compilers emit memory alignment directives for branch targets to ensure
that they end up on the “right” addresses. In quicksort, branch alignment
reduces execution time by 1.9%.
Register allocation. The register allocator in the Caml compiler per-
forms live range splitting of variables that cannot be coloured (Cooper and
Simpson 1998). For some Caml programs, this strategy is very successful
and results in fewer spills and reloads than in the code generated by cmmc.
In the case of quicksort, the additional memory accesses occur inside the
inner loop, which exacerbates the differences in execution times.

Register Usage of Special Functions

Caml intermediate code contains frequent calls to the function alloc_mem.
This function is a special function in Caml’s run-time system written in
assembly language that preserves the values of all machine registers. The
register allocator of the Caml compiler takes advantage of this knowledge,
but this information cannot be communicated to the C-- register allocator,
since C-- provides no syntax for that. Since calls to alloc_mem are frequent,
this loss of information could result in measurable increases in execution
time. In Section 8.2 I propose to extend C-- with annotations to express
register usage of functions.

Exceptions

Raising and handling exceptions using C-- continuations is slightly more
expensive than the implementation used by the native Caml compiler. C--

continuations are strictly more expressive than exception handlers (Sec-
tion 6.2.3), and this has a small run-time cost.

Table 7.6 shows the number and kind of instructions required to enter
the scope of a handler, leave the scope of a handler, and raise an exception,
all of them in the Alpha back end. Caml targeted to C-- requires less ALU
instructions, but more loads and stores, which are more expensive. (The
instruction count of raising an exception does not include the instructions
for passing the exception argument to the Caml handler nor to the C--

continuation. However, this is exactly the same in the native Caml compiler
and in the version targeted to C--.)

I expect that in real Caml programs the overhead due to the implemen-
tation of exceptions should be unnoticeable.

CHAPTER 7. EVALUATION 118

load store ALU
Caml 0 2 2enter scope of handler
Caml/C-- 0 4 1
Caml 1 0 1leave scope of handler
Caml/C-- 1 0 0
Caml 2 0 2raise exception
Caml/C-- 4 0 0

Table 7.6: Instruction counts of exceptions in an Alpha.

7.3 Summary

I have shown that targeting C-- in two real compilers for C and Caml
involves substantially less effort than implementing a whole code generator
from scratch.

With the lcc/C-- compiler we win both ways, improved performance
and reduced implementation effort. The code produced by the Caml/C--
compiler provides a very reasonable trade-off against a reduced implemen-
tation effort.

Some optimisations are currently missing from cmmc; two examples are
instruction scheduling and live range splitting. If the C-- compiler is further
improved and merging of allocations is added to the Caml C-- emitter, it is
reasonable to expect that Caml/C-- can produce code of the same quality
as that produced by the original Caml compiler. Furthermore, all compilers
targeting C-- will benefit in the future from improved optimisations in cmmc.

Chapter 8

Proposed Extensions to C--

In the design of a generic intermediate language there are two important
goals:

• All the constructs of a variety of source languages should be express-
ible in the intermediate language without loss of essential semantic
information.

• The intermediate language should translate to efficient machine code
for a wide range of target architectures.

The intermediate language designer has to resolve the tension between
language simplicity and trying to support every source language and every
target architecture. As Muchnick says, “Intermediate language design is
largely an art, not a science” (Muchnick 1997).

I have evaluated C-- as a target language for C and Caml, and I have
demonstrated that C-- can effectively support a wide variety of high-level
language constructs. In Section 8.1 I illustrate the tension mentioned above
by identifying a high-level construct present in C, C++ and Java that can-
not be expressed in C--. This loss of semantic information can result in
machine code that violates the semantics of the source program. I propose
an extension to C-- to capture this source-level semantics.

In Section 8.2 I enumerate a number of constructs that can be added
to C-- so that high-level information can be used to generate more efficient
code. Like the annotations proposed in Chapter 3, these constructs are
useful for any generic intermediate language, not just C--.

119

CHAPTER 8. PROPOSED EXTENSIONS TO C-- 120

8.1 The volatile Type Qualifier

Consider the following C function definition:

1 void f(int *iptr, volatile int *viptr) {

2 *iptr = 0;

3 *iptr = 1;

4 *viptr = 0;

5 *viptr = 1;

6 }

The statement in line 2 is a dead store and can be eliminated (Muchnick
1997). The similar-looking one in line 4 cannot be removed, though. In C,
a store through a volatile pointer cannot be optimized away, even if it
appears to be dead:

An lvalue expression of a volatile-qualified type should not
participate in optimisations that would increase, decrease, or
delay any references to, or modifications of, the object (Harbison
and Steele 1995, p. 83).

According to this restriction, several common back-end optimisations
are illegal on references to volatile values, including dead store elimina-
tion, partial redundancy elimination (Morel and Renvoise 1979) and register
promotion (Cooper and Lu 1997).

The volatile type qualifier is present not only in C, but also in C++
and Java. (See (Harbison and Steele 1995) for the motivation and examples
of use of the volatile type qualifier.)

C-- does not provide the equivalent of volatile. Thus, lcc translates
the function above to the following C-- code:

1 foreign "C" f(bits64 iptr, bits64 viptr) {

2 bits32[iptr] = 0;

3 bits32[iptr] = 1;

4 bits32[viptr] = 0;

5 bits32[viptr] = 1;

6 foreign "C" return();

7 }

CHAPTER 8. PROPOSED EXTENSIONS TO C-- 121

Given this code, an optimizing C-- compiler could delete the two stores in
lines 2 and 4. But the volatile qualifier in the source C program explicitely
forbids that stores through the pointer viptr be altered!

This is an example of semantic information that is essential to the code
generator but cannot be expressed in C--. The loss of this information can
result in incorrect code being generated. Given the simplicity of C--’s type
system, perhaps the best way to deal with volatile values in C-- is not by
qualifying types in value declarations, but by annotating individual loads
and stores. For instance, the syntax of memory references in C-- could be
extended from type[expr [aligned]] to type[expr [aligned] ["volatile"]].

8.2 C-- Extensions for Performance

In this section I enumerate two constructs that could be added to C-- so
that common high-level constructs can be compiled to more efficient machine
code via C--.

Fine Control of Register Usage

The following code sequence occurs frequently in Caml’s Mach intermediate
language:

x = ...

ptr = alloc_mem(sz)

[ptr] = x

alloc_mem is a function in Caml’s run-time system written in assembly
language that preserves the values of all machine registers. The register
allocator of the Caml compiler takes advantage of this knowldege and is
free to assign x to a caller-saves register. (This is cheaper than saving x in
memory across the call to alloc_mem and also cheaper than using a callee-
saves register, which incurs the cost of saving and restoring the register at
function entry and exit respectively.)

To the C-- compiler, though, alloc_mem is like any other function; the
compiler has to assume that it may overwrite the caller-saves registers.
Therefore, it has to spill x, and indeed any other variables that are live
across the call to alloc_mem. Since such calls are very frequent in Caml
programs, this can have a noticeable effect on the performance of the gen-
erated code.

CHAPTER 8. PROPOSED EXTENSIONS TO C-- 122

Some form of annotation for calls in C-- would be very useful to express
information about the particular register usage of frequently-called special
functions.

Testing for Overflow

Some front ends would benefit if C-- provided a language construct to test
for overflow of arithmetic operations. Some programming languages, for
instance SML (Milner et al. 1990), require that an exception be thrown
when overflow occurs in an arithmetic operation. This requires a check for
overflow after every potentially-overflowing arithmetic operation. The SML
to C compiler checks for overflow by bit-testing of the operands and results
of every arithmetic operation that may overflow (Tarditi et al. 1992). This
is substantially more expensive than what can be achieved using assembly
language directly, since overflow flags are often visible. C-- should provide
a construct to test for overflow that is convenient for the front end to emit
and that can be translated to efficient machine code. For instance, C--

could provide a built-in unary operator %overflow. When this operator
appears in the condition of an if statement, the C-- compiler would emit
a “branch-on-overflow” instruction, or code to check the overflow bit and
branch, depending on what the target architecture provides.

Chapter 9

Conclusions

In this dissertation I have described the development of a generic code gener-
ation infrastructure, consisting of a compiler and a low-level run-time system
for C--, a portable compiler intermediate language. In addition I have pro-
posed improvements and enhancements to C-- and to its run-time system.

The starting point for my work was an initial proposal for an interme-
diate language and a low-level run-time system. Neither of them had been
implemented completely nor evaluated in a real compiler. I have refined and
generalised their design and built an implementation. The complete system
provides a practical code generation infrastructure.

I have shown that this code generation infrastructure (1) can be used
to compile very diverse source programming languages; (2) substantially
reduces the overall effort required to implement a programming language;
(3) can capture and retain high-level information useful for low-level opti-
misations; (4) can capture and retain high-level information necessary to
support run-time services; (5) does not increase the complexity of the com-
piler’s front end, the run-time system, or the interface between the two; and
(5) produces code competitive to that generated by monolithic compilers.

A detailed summary of the contributions follows.

9.1 Summary of Contributions

I have implemented the first compiler and run-time system for C--. I have
also retrofitted two existing compilers to use C-- as a target language, includ-
ing one for a language that supports both garbage collection and exception
handling. (These are the first compilers to use C--.) I have shown that C--

123

CHAPTER 9. CONCLUSIONS 124

can be used to compile very dissimilar source languages.
As a direct result of the implementation, I have proposed improvements

to both C-- and its run-time interface. I have proposed that C-- be extended
with syntax to express all of the following:

• volatile values (Section 8.1);

• indirect branches and first-class labels (Section 6.1.1);

• special register usage of functions (Section 8.2);

• necessary pointer maps for accurate garbage collection (Section 3.1.5).

The first one is essential to convey high-level semantics of several source
languages, including C and Java; without this extension it is not possible
to translate these languages to C-- in a way that preserves the original
semantics of programs.1 The other extensions are important for efficiency.
In addition, I have extended the C-- run-time interface with functionality
to support the following high-level run-time services:

• generational stack collection (Section 4.4);

• stack walking in languages that provide a foreign function interface
(Section 4.7).

Finally, I have augmented C--’s run-time interface so that accurate
garbage collection can be implemented more easily and efficiently than is
possible with the original interface (Section 4.5).

The following are my main contributions to the compilation of C--:

• The translation of continuations (Section 5.1.3). C-- continuations
are more expressive than exception handlers. The consequence is that
continuations require a run-time representation different from the one
that is often used for exception handlers. It turns out that this rep-
resentation has a slight run-time cost. I have identified the costs of
using C-- continuations to implement exception handling.

1The only feature of C that C-- does not support directly is functions with a variable
number of arguments.

CHAPTER 9. CONCLUSIONS 125

• A novel compilation method for globally reserved machine registers
(Section 5.1.5). The result is that the register allocator can use a
reserved register for other variables in parts of the program where the
reserved register is dead. This can decrease spills.

• The selection of the parameter passing convention (Section 5.1.1). To
support tail-call optimisation, C-- may use only one of several possible
calling conventions. I also identify situations in which it is possible to
use different, more efficient, calling conventions.

To communicate high-level program properties from the front end of
the compiler to the code generator, I have proposed that the intermediate
language be extended with syntax to express all of the following:

• control flow of non-returning calls (Section 3.1.1);

• control flow due to exceptions (Section 3.1.2);

• branch prediction (Section 3.1.3);

• data prefetching (Section 3.1.4);

• memory disambiguation (Section 3.1.6);

• side effects of functions (Section 3.1.7);

These constructs are general: they can be retrofitted to other existing
or future intermediate languages, not just C--.

9.2 Directions for Future Research

9.2.1 Debugging

Debuggers need compiler support to examine and modify the values of vari-
ables, to insert breakpoints, etc. (Hanson 1999). The back-end information
required for debugging is much the same as what is needed to inspect the
stack for garbage collection or exception handling. Front-end information is
necessary too, such as the types of variables, their scopes, etc. These two
sources of information are emitted by the compiler and consumed during a
debugging session.

CHAPTER 9. CONCLUSIONS 126

It would be possible to write a debugger for a language that uses C--

in the back end. Front-end and back-end information would be emitted
separately and combined by the debugger, using the C-- run-time inter-
face (Peyton Jones et al. 1999). Instead of implementing a debugger from
scratch, the compiler could generate debugging information in a standard
debugging format, so that an off-the-shelf debugger could be used. In order
to do this, the front-end information would be combined with the debugging
information emitted by the C-- compiler, at compile time. The mechanisms
that C-- should provide to interpret this information need to be investigated.

9.2.2 Heap-allocated Activations

One option to implement first-class continuations is to allocate activation
frames in the heap instead of in the stack (Appel 1992). This method has
the advantage that other language features, such as concurrency, are simpler
to implement (Reppy 1999).2 There are intermediate languages, lower level
than C--, in which the front end manages the allocation of activations itself
(George and Leung 2000). This provides great flexibility, but also requires
that the front end maintain the mapping from spilled variables to spill loca-
tions. This is clearly a back-end issue, since it involves machine-dependent
details. If the back end could take care of it, it would simplify the front end
considerably. An open question is how to support heap-allocated activa-
tions in C-- in such a way that spilling is implemented by the C-- compiler,
without complicating the front end unduly.

9.2.3 Type Systems to Express Program Properties

An expressive type system provides an alternative to annotations to commu-
nicate static program properties to the code generator. Typed intermediate
languages have been developed in which it is possible to encode complex
propositions and proofs about a program (Shao et al. 2002). An open
research question is how to overlay a more expressive type system onto C--.

2E.g., the run-time system does not have to implement a mechanism to resize the stack
of a thread, since no “stack overflow” errors occur at run-time.

CHAPTER 9. CONCLUSIONS 127

9.2.4 Annotations for Mobile Intermediate Representations

This dissertation has not addressed the issue of annotation safety when the
intermediate representation is mobile code. In this scenario, malicious third
parties can alter the annotations while the code is in transit. Tampering
with branch prediction and prefetching annotations can result in slower ex-
ecution time, but it cannot alter the original semantics of the program.
Others, like annotations that express control-flow or register usage, are sen-
sitive and would need a safety mechanism if they are transmitted across
insecure channels. The standard tools of cryptography can be used for these
situations, but language-based mechanisms, like proof-carrying code (Necula
1997), constitute a promising research direction.

Appendix A

Syntax of C--

compilation unit ⇒ {toplevel}

toplevel ⇒ section string { {section} }
| decl
| function

section ⇒ decl
| function
| datum

decl ⇒ import name {, name} ;
| export name {, name} ;
| register type name int ;

datum ⇒ name :

| align int ;

| type [size] [init] ;

init ⇒ { expr {, expr} }
| string

size ⇒ [[expr]]

body ⇒ {decl | stackdecl | stmt}
function ⇒ [conv] name ([formals]) { body }

formal ⇒ type name

actual ⇒ expr

formals ⇒ formal {, formal}
actuals ⇒ actual {, actual}
stackdecl ⇒ stackdata { {datum} }

128

APPENDIX A. SYNTAX OF C-- 129

stmt ⇒ ;

| if expr { body } [else { body }]
| switch expr { {arm} }
| lvalue = expr ;

| [name {, name} =] [conv] expr ([actuals]) {flow} ;
| [conv] jump expr ([actuals]) ;

| [conv] return [([actuals])] ;
| name :

| continuation name (name {, name}) :

| goto expr [(name {, name})] ;
| cut to expr ([actuals]) ;

arm ⇒ case range {, range} : { body }

range ⇒ expr [.. expr]

lvalue ⇒ name

| type [expr [aligned]]

flow ⇒ also cuts to name {, name}
| also aborts

expr ⇒ int

| float

| ’ char ’

| name

| type [expr [aligned]]
| (expr)

| expr op expr
| ~ expr
| % name ([actuals])

type ⇒ bitsn

| floatn

conv ⇒ foreign string

aligned ⇒ align int

op ⇒ + | - | * | / | % | & | | | ^ | @<< | >> | == | != | > | < | >= | <=

Appendix B

Comparing C-- to MLRISC

In this appendix I compare, by means of an example, C-- and MLRISC, two
generic intermediate languages (ILs) of different semantic level. In general,
the semantic level of an IL determines how much translation work has to be
done by the front end and how much remains to be done by the back end.
The example has been chosen to highlight the differences between the two
ILs, rather than to provide an exhaustive comparison.

C-- and MLRISC have been designed from the outset with language
independence in mind. This is in contrast to many other ILs like ANDF,
GCC’s Tree language (FSF 2002) or JVM code, which are biased towards a
specific language or a family of related languages. Most ILs support a num-
ber of primitive types, simple expressions (literals, variables, arithmetic,
logical, bit manipulation, type conversion, etc.), and simple statements (as-
signments, basic control flow, etc.). High-level ILs provide abstractions of
programming languages. For instance, GCC’s Tree language supports all
the primitive and aggregate types of C and C++, plus class and method
types. Low-level ILs such as C-- provide abstractions of hardware. They
support hardware types (word and floating point), hide restrictions of the
architecture and the instruction set (limited number of registers, limited
addressing modes, etc.), and hide the conventions of the operating system
(parameter passing, system stack, etc.). C-- and MLRISC do not support
aggregate types, such as records, arrays, or variants. As a consequence, a
front end that targets C-- or MLRISC has to translate aggregate declara-
tions and references to explicit memory allocation and memory references.
C-- provides direct support for function declarations, function calls and pa-
rameter passing, while MLRISC does not. Neither C-- nor MLRISC support

130

APPENDIX B. COMPARING C-- TO MLRISC 131

directly class and method definitions, nor method invocation. MLRISC is
lower-level than C--, which means that a front end has to do more work to
target MLRISC than to target C--. In exchange, the front end that targets
MLRISC has complete control over parameter passing, allocation of activa-
tion frames, and even what code to generate when a virtual register must
be spilled.

Chapter 6 shows how to translate a number of higher-level constructs
into C--(conditional expressions, function calls nested inside expressions,
exception handling, etc.). This appendix demonstrates the translation of
additional constructs that are not supported directly by C-- (nested scopes,
access to aggregate values and access to sub-word values.). It also shows con-
structs that translate directly to C-- but need to be expanded to primitive
constructs in MLRISC (activation frame set-up, accessing function parame-
ters and results, and management of callee-saves registers.). The differences
arise due to the lack of direct support for function definitions and parameter
passing in MLRISC.

The source code of the example, in C, appears in Figure B.1. The C--

translation is as emitted by lcc, edited only for readability. The only as-
sumption is that C ints are represented in 32 bits; it is shown in Figure B.2.
The MLRISC code is emitted by cmmc, targeting the Alpha architecture; it
appears in Figure B.3.

In the MLRISC code, integer registers are named $0 to $31, floating
point registers are named $f0 to $f31 and temporaries are named as vir-
tual registers with number different from any physical register. (In this
example numbers above 500 are used.) The MLRISC code is much more
target-specific. For instance, all the details of the calling convention are ex-
plicit. This includes allocation/deallocation of activation frames, parameter
passing in certain registers, and saving/restoring the callee-saves registers.
All this code would be similar for other architectures, except that the spe-
cific registers would vary. The exception is two instructions commented as
Alpha-specific that update register $29 on function entry and return. In this
example, all the copies between callee-saves registers and temporaries can
be eliminated by register coalescing. The same is true of the copies between
parameter registers and temporaries. A clever compiler would generate no
machine code for all those copies.

APPENDIX B. COMPARING C-- TO MLRISC 132

extern int f(int, int, int, int, int, int, int);
extern int g(void);

int example(int parameter1, int parameter2, int parameter3,
int parameter4, int parameter5, int parameter6,
int parameter7) {

int local_var, incoming_result;

/* Aggregate value */

struct { float i; float j;} local_struct;

/* Sub-word values */

struct { int a:5, b:5, c:3;} bitfields;

/* Nested scope */

{ int local_var = 0; }

/* Access aggregate value */

local_struct.j = 0.0;

/* Access sub-word value */

bitfields.a = local_var;

/* Access parameters, results, and pass parameters */

local_var = parameter1 + parameter7;

incoming_result = f(1,2,3,4,5,6,7);

return(0);
}

Figure B.1: C code.

APPENDIX B. COMPARING C-- TO MLRISC 133

import f, g;
export example;

foreign "C" example(bits32 parameter1, bits32 parameter2,
bits32 parameter3, bits32 parameter4,
bits32 parameter5, bits32 parameter6,
bits32 parameter7) {

bits32 local_var, incoming_result;

/* struct { float i; float j;} local_struct;

struct { int a:5, b:5, c:3;} bitfields;

Structs are allocated in memory */

stackdata { align 4; local_struct: bits32[2];}
stackdata { align 4; bitfields: bits32;}

/* { int local_var = 0; }

Nested scopes are implemented by renaming identifiers

that already exist in outer scopes */

bits32 local_var1;
local_var1 = 0;

/* local_struct.j = 0.0;

Access to struct is an explicit memory store */

float32[local_struct +u 4] = 0.0;

/* bitfields.a = local_var;

Access to sub-word value via bit manipulation */

bits32[bitfields] = (bits32[bitfields] & -32) |
(((local_var << 27) >> 27) & 31);

/* Access to parameters, results, and parameter passing are

supported directly in C-- */

local_var = parameter1 + parameter7;

incoming_result = foreign "C" f(1, 2, 3, 4, 5, 6, 7);

foreign "C" return (0);
}

Figure B.2: C-- code for the C program in Figure B.1.

APPENDIX B. COMPARING C-- TO MLRISC 134

example:

/* Alpha-specific code */

$29 := $27

/* struct { float i; float j;} local_struct;

struct { int a:5, b:5, c:3;} bitfields;

Allocate activation frame */

$sp := $sp - (16)

/* $f2-$f9 are FP callee-saves registers. Save them

to temporaries */

$f527,$f528,$f529,$f530,$f531,$f532,$f533,$f534 := $f2,$f3,$f4,

$f5,$f6,$f7,$f8,$f9

/* $9-$15, $26 are integer callee-saves registers.

Save them to temporaries */

$519,$520,$521,$522,$523,$524,$525,$526 := $9,$10,$11,$12,$13,

$14,$15,$26

/* Incoming parameters in registers $16-$21 and stack location.

Copy them to temporaries */

$518 := mem.32[$sp + (16)]

$512,$513,$514,$515,$516,$517 := $16,$17,$18,$19,$20,$21

/* { int local_var = 0; } */

$541 := 0

/* local_struct.j = 0.0;

Access to struct is an explicit memory store.

Register $f31 contains the value 0.0 */

mem.s[$sp + (8)] := $f31

/* bitfields.a = local_var;

Access to sub-word value via bit manipulation */

mem.32[$sp + (4)] := ((mem.32[$sp + (4)]) & -32) |

((($539 << 27) ~>> 27) & 31)

APPENDIX B. COMPARING C-- TO MLRISC 135

/* local_var = parameter1 + parameter7; */

$539 := $512 + $518

/* incoming_result = f(1,2,3,4,5,6,7);

Pass parameters in registers $16-$21 and stack location */

$16 := 1
$17 := 2
$18 := 3
$19 := 4
$20 := 5
$21 := 6
mem.32[$sp] := 7
call $f
/* Alpha-specific code */

$29 := $26

/* Incoming result in register $0 */

$540 := $0

/* return (0);

Return result in register $0 */

$0 := 0

/* Restore values of FP and integer callee-saves registers */

$f2,$f3,$f4,$f5,$f6,$f7,$f8,$f9 := $f527,$f528,$f529,$f530,
$f531,$f532,$f533,$f534

$9,$10,$11,$12,$13,$14,$15,$26 := $519,$520,$521,$522,$523,
$524,$525,$526

/* Deallocate activation frame. Return */

$sp := $sp + (16)
return

Figure B.3: MLRISC code for the C program in Figure B.1.

Bibliography

Abelson, H., R. K. Dybvig, C. T. Haynes, G. J. Rozas, N. I. A. IV, D. P.
Friedman, E. Kohlbecker, G. L. Steele Jr., D. H. Bartley, R. Halstead,
D. Oxley, G. J. Sussman, G. Brooks, C. Hanson, K. M. Pitman, and
M. Wand (1998, August). Revised report on the algorithmic language
Scheme. Higher-Order and Symbolic Computation 11 (1), 7–105. 64

Agesen, O., D. Detlefs, and J. E. B. Moss (1998, 17–19 June). Garbage
collection and local variable type-precision and liveness in Java virtual
machines. See PLDI (1998), pp. 269–279. SIGPLAN Notices 33(5), May
1998. 7, 27, 116

Aho, A. V., R. Sethi, and J. D. Ullman (1986). Compilers: Principles,
Techniques and Tools. Addison-Wesley. 90

Appel, A. W. (1992). Compiling with Continuations. Cambridge University
Press. 71, 75, 90, 126

Appel, A. W. (1998). Modern Compiler Implementation in ML. Cambridge
University Press. 26, 71, 86, 94

Appel, A. W., J. S. Mattson, and D. R. Tarditi (1994). A lexical Analyzer
Generator for Standard ML. Version 1.6.0. Available from http://cm.
bell-labs.com/cm/cs/what/smlnj/doc/ML-Lex/. 61

Bacon, D. F., S. L. Graham, and O. J. Sharp (1994, December). Com-
piler transformations for high-performance computing. ACM Computing
Surveys 26 (4), 345–420. 2, 19

Ball, T. and J. R. Larus (1993, 23–25 June). Branch prediction for free.
See PLDI (1993), pp. 300–313. SIGPLAN Notices 28(6), June 1993. 25

Barabash, K., N. Buchbinder, T. Domani, E. K. Kolodner, Y. Ossia,
S. S. Pinter, J. Shepherd, R. Sivan, and V. Umansky (2001, April 23–
24). Mostly accurate stack scanning. In Proceedings of the JavaTM Vir-
tual Machine Research and Technology Symposium (JVM-01), Monterey,
California, USA, pp. 153–170. USENIX Association. 36, 51, 52, 54

136

http://cm.bell-labs.com/cm/cs/what/smlnj/doc/ML-Lex/
http://cm.bell-labs.com/cm/cs/what/smlnj/doc/ML-Lex/

BIBLIOGRAPHY 137

Bartlett, J. (1989). SCHEME to C: a portable Scheme-to-C compiler.
Technical Report RR 89/1, DEC WRL. 5

Bell, J. R. (1973, June). Threaded code. Communications of the
ACM 16 (6), 370–372. 83

Benitez, M., P. Chan, J. Davidson, A. Holler, S. Meloy, and V. Santhanam
(1991, March). ANDF: Finally an UNCOL after 30 years. Technical Re-
port TR-91-05, University of Virginia, Department of Computer Science,
Charlottesville, VA. 7, 12

Benitez, M. E. and J. W. Davidson (1988, 22–24 June). A portable global
optimizer and linker. In Proceedings of the ACM SIGPLAN’88 Conference
on Programming Language Design and Implementation (PLDI), Atlanta,
Georgia, pp. 329–338. SIGPLAN Notices 23(7), July 1988. 4, 19

Benton, N. and A. Kennedy (2000). Monads, effects and transformations.
In A. Gordon and A. Pitts (Eds.), Electronic Notes in Theoretical Computer
Science, Volume 26. Elsevier Science Publishers. 29, 32

Benton, N., A. Kennedy, and G. Russell (1998, June). Compiling Standard
ML to Java bytecodes. See ICFP (1998), pp. 129–140. 5

Blume, M. (2001). No-longer-foreign: Teaching an ML compiler to speak C
“natively”. In Electronic Notes in Theoretical Computer Science, Volume
59(1). Elsevier Science. 50

Boehm, H.-J. (2002, 16-18 January). Bounding space usage of conser-
vative garbage collectors. In Conference Record of POPL’02: The 29th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages”. 7

Boehm, H.-J. and M. Weiser (1988). Garbage collection in an uncooperative
environment. Software Practice and Experience 18 (9), 807–820. 7, 35, 37

Boquist, U. (1999, April). Code Optimisation Techniques for Lazy Func-
tional Languages. Ph. D. thesis, Chalmers University of Technology,
Gothenburg, Sweden. 60

Bothner, P. (1998). Kawa: Compiling Scheme to Java. In Lisp Users
Conference, Berkeley, CA. 5

Briggs, P. and K. D. Cooper (1994, 20–24 June). Effective partial redun-
dancy elimination. In Proceedings of the ACM SIGPLAN’94 Conference
on Programming Language Design and Implementation (PLDI), Orlando,
Florida, pp. 159–170. SIGPLAN Notices 29(6), June 1994. 29

Chase, D. (1994, June). Implementation of exception handling, Part I. The
Journal of C Language Translation 5 (4), 229–240. 3

BIBLIOGRAPHY 138

Cheng, B.-C. and W.-m. W. Hwu (2000, 18–21 June). Modular interpro-
cedural pointer analysis using access paths: Design, implementation, and
evaluation. See PLDI (2000), pp. 57–69. SIGPLAN Notices 35(5), May
2000. 29, 32

Cheng, P., R. Harper, and P. Lee (1998, 17–19 June). Generational stack
collection and profile-driven pretenuring. See PLDI (1998), pp. 162–173.
SIGPLAN Notices 33(5), May 1998. 8, 33, 44, 45, 48

Cho, S., J. Tsai, Y. Song, B. Zheng, S. Schwinn, X. Wang, Q. Zhao, Z. Li,
D. Lilja, and P. Yew (1998, August). High-level information : An approach
for integrating front-end and back-end compilers. In Proceedings of the 1998
International Conference on Parallel Processing (ICPP ’98), Washington
- Brussels - Tokyo, pp. 346–355. IEEE USA. 31

Choi, J.-D., D. Grove, M. Hind, and V. Sarkar (1999, September 6). Effi-
cient and precise modeling of exceptions for the analysis of Java programs.
In Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, Volume 24.5 of Software En-
geneering Notes (SEN), N. Y., pp. 21–31. ACM Press. 31, 66

Clinger, W. D. (1998, 17–19 June). Proper tail recursion and space effi-
ciency. See PLDI (1998), pp. 174–185. SIGPLAN Notices 33(5), May 1998.
64, 86

Codognet, P. and D. Diaz (1995, June 13–18). WAMCC: Compiling Prolog
to C. In L. Sterling (Ed.), Proceedings of the 12th International Conference
on Logic Programming, Cambridge, pp. 317–332. MIT Press. 5

Conway, M. (1958, October). Proposal for an UNCOL. Communications
of the ACM 1 (10), 5–8. 7

Cooper, K. D. and J. Lu (1997, 15–18 June). Register promotion in C
programs. See PLDI (1997), pp. 308–319. SIGPLAN Notices 32(5), May
1997. 120

Cooper, K. D. and L. T. Simpson (1998). Live range splitting in a graph
coloring register allocator. In Proceedings of the 7th International Confer-
ence on Compiler Construction (CC’98), Volume 1383 of LNCS, Lisbon
(Portugal), pp. 174–188. Springer–Verlag. 117

Diwan, A., K. S. McKinley, and J. E. B. Moss (1998, 17–19 June). Type-
based alias analysis. See PLDI (1998), pp. 106–117. SIGPLAN Notices
33(5), May 1998. 29

Diwan, A., J. E. B. Moss, and R. L. Hudson (1992, 17–19 June). Compiler
support for garbage collection in a statically typed language. In Proceedings

BIBLIOGRAPHY 139

of the ACM SIGPLAN’92 Conference on Programming Language Design
and Implementation (PLDI), San Francisco, California, pp. 273–282. SIG-
PLAN Notices 27(7), July 1992. 3, 7, 27, 35, 47

Diwan, A., D. Tarditi, and J. E. B. Moss (1995, August). Memory subsys-
tem performance of programs with intensive heap allocation. ACM Trans-
actions on Computer Systems 13 (4), 244–273. 7, 114

Dulong, C., R. Krishnaiyer, D. Kulkarni, D. Lavery, W. Li, J. Ng, and
D. Sehr (1999). An overview of the Intel IA-64 compiler. Intel Technology
Journal (Q4). 25

Ertl, M. A. (1999, January 20–22,). Optimal code selection in DAGs.
In Conference Record of POPL’99: The 26th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, San Antonio, Texas,
pp. 242–249. 94

Evans, J. S. and R. H. Eckhouse (1999). Alpha RISC architecture for
programmers. Prentice-Hall PTR. 72

Ferrante, J., K. J. Ottenstein, and J. D. Warren (1987, July). The pro-
gram dependence graph and its use in optimization. ACM Transactions on
Programming Languages and Systems 9 (3), 319–349. 20

Finne, S., D. Leijen, E. Meijer, and S. Peyton Jones (1998, June). H/Direct:
A binary foreign function interface for Haskell. See ICFP (1998), pp. 153–
162. 50

Flanagan, C., A. Sabry, B. F. Duba, and M. Felleisen (1993, 23–25 June).
The essence of compiling with continuations. See PLDI (1993), pp. 237–
247. SIGPLAN Notices 28(6), June 1993. 93, 94, 116

Franz, M. and T. Kistler (1997, December). Slim binaries. Communications
of the ACM 40 (12), 87–94. 12

Fraser, C. W. and D. R. Hanson (1995). A Retargetable C Compiler: Design
and Implementation. Addison-Wesley. 12, 82, 83, 89, 104, 109

FSF (2001). The GNU Compiler for the Java Programming Language.
FSF. Available from http://http://gcc.gnu.org/java/. 50

FSF (2002). GNU Compiler Collection (GCC) Internals. ”Free Software
Foundation”. Available from http://gcc.gnu.org/onlinedocs/gccint/.
130

George, L. and A. W. Appel (1996, May). Iterated register coalescing. ACM
Transactions on Programming Languages and Systems 18 (3), 300–324. 76,
84, 109

http://http://gcc.gnu.org/java/
http://gcc.gnu.org/onlinedocs/gccint/

BIBLIOGRAPHY 140

George, L. and A. Leung (2000, November). MLRISC: A framework
for retargetable and optimizing compiler back ends. Unpublished report
available from http://www.cs.nyu.edu/leunga/www/MLRISC/Doc/html/
index.html. 4, 19, 33, 61, 126

GHC Team (2001). The Glasgow Haskell Compiler User’s Guide. Available
from http://www.haskell.org/ghc/. 50

Ghiya, R., D. Lavery, and D. Sehr (2001, June 20–22,). On the impor-
tance of points-to analysis and other memory disambiguation methods for
C programs. In Proceedings of the ACM SIGPLAN ’01 Conference on
Programming Language Design and Implementation, Snowbird, Utah, pp.
47–58. SIGPLAN Notices, 36(5), May 2001. 32

Hailperin, M. (1998, November). Cost-optimal code motion. ACM Trans-
actions on Programming Languages and Systems 20 (6), 1297–1322. 25

Hanson, D. R. (1999, August). A machine-independent debugger — revis-
ited. Software—Practice and Experience 29 (10), 849–862. 125

Harbison, S. P. and G. L. Steele (1995). C—A Reference Manual (Fourth
ed.). Upper Saddle River, NJ 07458, USA: Prentice-Hall. 84, 120

Hausman, B. (1994). Turbo erlang: Approaching the speed of C. In E. Tick
and G. Succi (Eds.), Implementations of Logic Programming Systems, pp.
119–135. Kluwer Academic Publishers. 5

Henderson, F. (2002, June). Accurate garbage collection in an uncoopera-
tive environment. In D. Detlefs (Ed.), ISMM’02 Proceedings of the Third
International Symposium on Memory Management, ACM SIGPLAN No-
tices, Berlin, pp. 150–156. ACM Press. 7

Henderson, F., T. Conway, and Z. Somogyi (1995). Compiling logic pro-
grams to C using GNU C as a portable assembler. In ILPS’95 Postconfer-
ence Workshop on Sequential Implementation Technologies for Logic Pro-
gramming, Portland, Or, pp. 1–15. 5

Henderson, F., T. Conway, Z. Somogyi, D. Jeffery, P. Schachte, S. Taylor,
C. Speirs, and T. Dowd (2002). The Mercury Language Reference Manual.
Available from http://www.cs.mu.oz.au/research/mercury/. 50

Hennessy, J. (1981, January 26–28,). Program optimization and exception
handling. In Conference Record of the Eigth Annual ACM Symposium on
Principles of Programming Languages, Williamsburg, Virginia, pp. 200–
206. ACM SIGACT-SIGPLAN. 66

http://www.cs.nyu.edu/leunga/www/MLRISC/Doc/html/index.html
http://www.cs.nyu.edu/leunga/www/MLRISC/Doc/html/index.html
http://www.haskell.org/ghc/
http://www.cs.mu.oz.au/research/mercury/

BIBLIOGRAPHY 141

Hudson, R. L., J. E. B. Moss, A. Diwan, and C. F. Weight (1991, Septem-
ber). A language-independent garbage collector toolkit. Technical Re-
port COINS 91-47, University of Massachusetts at Amherst, Department
of Computer and Information Science. 60

ICFP (1998, June). Proceedings of the ACM SIGPLAN International Con-
ference on Functional Programming (ICFP’98). 137, 139

ISO/IEC (1999, December). ISO/IEC 9899:1999 Standard for the C pro-
gramming language (C99). Available from http://www.iso.ch. 26

Jones, R. E. (1996, July). Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Wiley. With a chapter on Distributed
Garbage Collection by R. Lins. 6, 7, 34

Kahrs, J. (2001, 6 October). JVM as UNCOL. Message posted to
the compilers mailing list. Available from http://compilers.iecc.com/
comparch/article/01-10-016. 5

Kelsey, R. and P. Hudak (1989, January 11–13,). Realistic compilation
by program transformation – detailed summary. In Conference Record
of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, pp. 281–292. ACM SIGACT-SIGPLAN: ACM
Press. 90

Koenig, A. and B. Stroustrup (1990, July/August). Exception handling
for C++. Journal of Object Oriented Programming 3 (2), 16–33. 3, 36

Kranz, D. A., R. Kelsey, J. Rees, P. H. an d James Philbin, and N. Adams
(1986, June). ORBIT: An optimizing compiler for Scheme. In Proceedings
of the ACM SIGPLAN ’86 Symposium on Compiler Construction, Volume
21(7) of ACM SIGPLAN Notices, Palo Alto, CA, pp. 219–233. ACM Press.
75

Krintz, C. and B. Calder (2001, 20–22 June). Using annotations to reduce
dynamic optimization time. In Proceedings of the ACM SIGPLAN’01 Con-
ference on Programming Language Design and Implementation (PLDI). 31

Leroy, X. (1990). The ZINC experiment, an economical implementation of
the ML language. Technical Report 117, INRIA. 93

Leroy, X., D. Doligez, J. Garrigue, D. Rémy, and J. Vouillon (2002). The
Objective Caml system: Documentation and user’s manual. Available from
http://caml.inria.fr. 1, 50, 82, 96, 105

Leroy, X. and F. Pessaux (2000, March). Type-based analysis of un-
caught exceptions. ACM Transactions on Programming Languages and
Systems 22 (2), 340–377. 23, 101

http://www.iso.ch
http://compilers.iecc.com/comparch/article/01-10-016
http://compilers.iecc.com/comparch/article/01-10-016
http://caml.inria.fr

BIBLIOGRAPHY 142

Liang, S. (1999). Java Native Interface: Programmer’s Guide and Specifi-
cation. Reading, MA, USA: Addison-Wesley. 50

Lieberman, H. and C. E. Hewitt (1983). A real-time garbage collector based
on the lifetimes of objects. Communications of the ACM 26(6), 419–429.
Also report TM–184, Laboratory for Computer Science, MIT, Cambridge,
MA, July 1980 and AI Lab Memo 569, 1981. 44

Lindholm, T. and F. Yellin (1999, April). The Java Virtual Machine Spec-
ification (Second ed.). The Java Series. Addison Wesley Longman, Inc. 5,
12

Lueh, G.-Y. and T. Gross (1997, 15–18 June). Call-cost directed register
allocation. See PLDI (1997), pp. 296–307. SIGPLAN Notices 32(5), May
1997. 75

Meijer, E. and J. Gough (2001). Technical overview of the common
language runtime. Available from http://research.microsoft.com/
~emeijer/. 60

Milner, R., M. Tofte, and R. Harper (1990). The Definition of Standard
ML. MIT Press. 122

Morel, É. and C. Renvoise (1979, February). Global optimization by sup-
pression of partial redundancies. Communications of the ACM 22 (2), 96–
103. 120

Mowry, T. C., M. S. Lam, and A. Gupta (1992, September). Design and
evaluation of a compiler algorithm for prefetching. In Fifth International
Conference on Architectural Support for Programming Languages and Op-
erating Systems (ASPLOS V), Boston, pp. 62–73. 32

Muchnick, S. S. (1997). Advanced compiler design and implementation.
San Mateo, California, USA: Morgan Kaufmann Publishers. 2, 12, 19, 89,
116, 119, 120

Necula, G. C. (1997, January 15–17,). Proof-carrying code. In Conference
Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Paris, France, pp. 106–119. 127

Novack, S., J. Hummel, and A. Nicolau (1995). A simple mechanism for im-
proving the accuracy and efficiency of instruction-level disambiguation. In
Languages and Compilers for Parallel Computing, Volume 1033 of LNCS.
29

Otto, T. P. (2001). Apl2c. the APL compiler. Available from http://www.
apl2c.com. 5

http://research.microsoft.com/~emeijer/
http://research.microsoft.com/~emeijer/
http://www.apl2c.com
http://www.apl2c.com

BIBLIOGRAPHY 143

Pelegŕı-Llopart, E. and S. L. Graham (1988, January 13–15,). Optimal
code generation for expression trees: An application of BURS theory. In
Conference Record of the Fifteenth Annual ACM Symposium on Princi-
ples of Programming Languages, San Diego, California, pp. 294–308. ACM
SIGACT-SIGPLAN: ACM Press. 94

Peyton Jones, S., N. Ramsey, and F. Reig (1999, September). C--: a
portable assembly language that supports garbage collection. In Interna-
tional Conference on Principles and Practice of Declarative Programming,
pp. 1–28. LNCS 1702. 5, 8, 12, 19, 33, 37, 39, 42, 47, 49, 52, 98, 126

Peyton Jones, S. L. (1996, 22–24 April). Compiling Haskell by Pro-
gram Transformation: A Report from the Trenches. In H. Nielson (Ed.),
ESOP’96 — European Symposium on Programming, Volume 1058 of Lec-
ture Notes in Computer Science, Linköping, Sweden, pp. 18–44. Springer-
Verlag. ISBN 3-540-61055-3. 90

Peyton Jones, S. L., T. Nordin, and D. Oliva (1997). C--: A portable
assembly language. In Proceedings of the 1997 Workshop on Implementing
Functional Languages. Springer Verlag LNCS. 12

Peyton Jones, S. L. and N. Ramsey (1998, August 8). Machine-independent
support for garbage collection, debugging, exception handling, and con-
currency (draft). Technical Report CS-98-19, Department of Computer
Science, University of Virginia. 98

PLDI (1993, 23–25 June). Proceedings of the ACM SIGPLAN’93 Con-
ference on Programming Language Design and Implementation (PLDI),
Albuquerque, New Mexico. SIGPLAN Notices 28(6), June 1993. 136, 139

PLDI (1997, 15–18 June). Proceedings of the ACM SIGPLAN’97 Confer-
ence on Programming Language Design and Implementation (PLDI), Las
Vegas, Nevada. SIGPLAN Notices 32(5), May 1997. 138, 142, 146

PLDI (1998, 17–19 June). Proceedings of the ACM SIGPLAN’98 Con-
ference on Programming Language Design and Implementation (PLDI),
Montreal, Canada. SIGPLAN Notices 33(5), May 1998. 136, 138

PLDI (2000, 18–21 June). Proceedings of the ACM SIGPLAN’00 Con-
ference on Programming Language Design and Implementation (PLDI),
Vancouver, British Columbia. SIGPLAN Notices 35(5), May 2000. 138,
144, 146

Polakow, J. and K. Yi (2001, March). Proving syntactic properties of
exceptions in an ordered logical framework. In The Fifth International
Symposium on Functional and Logic Programming (FLOPS’01), Volume
2024 of Lecture Notes in Computer Science, Tokyo, pp. 61–77. 96

BIBLIOGRAPHY 144

Pominville, P., F. Qian, R. Vallee-Rai, L. Hendren, and C. Verbrugge
(2001). A framework for optimizing Java using attributes. In CC 2001,
Volume 2027 of LNCS, pp. 334–354. 31

Ramsey, N. and S. Peyton Jones (2000, 18–21 June). A single intermediate
language that supports multiple implementations of exceptions. See PLDI
(2000), pp. 285–298. SIGPLAN Notices 35(5), May 2000. 16, 23, 33, 36,
38, 51, 65, 66, 98

Ramsey, N., S. Peyton Jones, C. Lindig, T. Nordin, D. Oliva, and
P. Nogueira Iglesias (2001, November). The C-- Reference Manual. Avail-
able at http://www.cminusminus.org. 12

Reppy, J. H. (1999). Concurrent Programming in ML. Cambridge Univer-
sity Press. 126

Reynolds, J. C. (1998). Theories of Programming Languages. Cambridge,
England: Cambridge University Press. 67

Schinz, M. and M. Odersky (2001). Tail call elimination on the Java Vir-
tual Machine. In N. Benton and A. Kennedy (Eds.), Electronic Notes in
Theoretical Computer Science, Volume 59. Elsevier Science Publishers. 5

Serrano, M. (1994, December). Bigloo user’s manual. Technical report
0169, INRIA-Rocquencourt, France. 50

Sethi, R. and J. D. Ullman (1970, October). The generation of optimal
code for arithmetic expressions. Journal of the ACM 17 (4), 715–728. 94

Shao, Z., B. Saha, V. Trifonov, and N. Papaspyrou (2002, January). A
type system for certified binaries. In Conference Record of POPL’02: The
29th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pp. 217–232. 31, 126

Stallman, R. M. (2001). Using and Porting the GNU Compiler Collection
(GCC). Free Software Foundation. Available from http://gcc.gnu.org/
onlinedocs/gcc-3.0/gcc.html. 4, 19, 21, 33, 71, 83

Steel, T. B. (1961). A first version of UNCOL. In Proceedings of the East-
ern Joint Computer Conference, pp. 371–377. Association of Computing
Machinery. 7

Steele, G. L. (1977). Debunking the “expensive procedure call” myth, or
procedure call implementations considered harmful, or LAMBDA, the ul-
timate GOTO. In ACM Conference Proceedings, pp. 153–162. Association
for Computing Machinery. 79

http://www.cminusminus.org
http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc.html
http://gcc.gnu.org/onlinedocs/gcc-3.0/gcc.html

BIBLIOGRAPHY 145

Stichnoth, J. M., G.-Y. Lueh, and M. Cierniak (1999, 1–4 May). Support
for garbage collection at every instruction in a Java compiler. In Proceedings
of the ACM SIGPLAN’99 Conference on Programming Language Design
and Implementation (PLDI), Atlanta, Georgia, pp. 118–127. SIGPLAN
Notices 34(5), May 1999. 36

Strong, J., J. Wegstein, A. Tritter, J. Olsztyn, O. Mock, and T. B. Steel
(1958). The problem of programming communication with changing ma-
chines: A proposed solution: Report of the share ad-hoc committe on
universal languages. Communications of the ACM 1 (8), 12–18. 7

Stroustrup, B. (1997). The C++ Programming Language (3rd Edition).
Reading, Mass.: Addison-Wesley. 66

Tal, A., V. Bassin, S. Gal-On, and E. Demikhovsky (1999, November).
Assembly language programming tools for the IA-64 architecture. Intel
Technology Journal (Q4), 10. 84

Tarditi, D. (2000, October). Compact garbage collection tables. In T. Hosk-
ing (Ed.), Proceedings of the Second International Symposium on Memory
Management, Minneapolis, MN. ACM Press. ISMM is the successor to the
IWMM series of workshops. 27

Tarditi, D., P. Lee, and A. Acharya (1992, June). No assembly required:
compiling standard ML to C. ACM Letters on Programming Languages
and Systems 1 (2), 161–177. 5, 122

Tarditi, D., G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee (1996,
21–24 May). TIL: A type-directed optimizing compiler for ML. In Pro-
ceedings of the ACM SIGPLAN ’96 Conference on Programming Language
Design and Implementation, Philadelphia, Pennsylvania, pp. 181–192. SIG-
PLAN Notices 31(5), May 1996. 49

Tarditi, D. R. and A. W. Appel (2000). ML-Yacc User’s Manual Version
2.4. Available from http://cm.bell-labs.com/cm/cs/what/smlnj/doc/
ML-Yacc/. 61

Tolmach, A. (1998). Optimizing ML using a hierarchy of monadic types.
Lecture Notes in Computer Science 1473, 97–?? 32

Ungar, D. M. (1984, April). Generation scavenging: A non-disruptive
high performance storage reclamation algorithm. ACM SIGPLAN No-
tices 19 (5), 157–167. Also published as ACM Software Engineering Notes
9, 3 (May 1984) — Proceedings of the ACM/SIGSOFT/SIGPLAN Soft-
ware Engineering Symposium on Practical Software Development Environ-
ments, 157–167, April 1984. 44

http://cm.bell-labs.com/cm/cs/what/smlnj/doc/ML-Yacc/
http://cm.bell-labs.com/cm/cs/what/smlnj/doc/ML-Yacc/

BIBLIOGRAPHY 146

Vaughan, G. V., B. Elliston, T. Tromey, and I. L. Taylor (2000). GNU
Autoconf, Automake and Libtool. Carmel, IN, USA: New Riders Publishing.
105

Wakeling, D. (1999, November). Compiling lazy functional programs for
the Java virtual machine. Journal of Functional Programming 9 (6), 579–
603. 5, 7, 37

Wentworth, E. P. (1990). Pitfalls of conservative garbage collection. Soft-
ware Practice and Experience 20 (7), 719–727. 7

Wilson, P. R. (1994, January). Uniprocessor garbage collection techniques.
Technical report, University of Texas. Expanded version of the IWMM92
paper. 44, 45, 60

Wilson, P. R. and M. S. Johnstone (1993, October). Truly real-time
non-copying garbage collection. In E. Moss, P. R. Wilson, and B. Zorn
(Eds.), OOPSLA/ECOOP ’93 Workshop on Garbage Collection in Object-
Oriented Systems. 60

Yi, K. and S. Ryu (2001). A cost-effective estimation of uncaught excep-
tions in Standard ML programs. Theoretical Computer Science 277 (1–2),
185–217. 23

Yi, Q., V. Adve, and K. Kennedy (2000, 18–21 June). Transforming loops
to recursion for multi-level memory hierarchies. See PLDI (2000), pp. 169–
181. SIGPLAN Notices 35(5), May 2000. 64

Young, C., D. S. Johnson, D. R. Karger, and M. D. Smith (1997, 15–
18 June). Near-optimal intraprocedural branch alignment. See PLDI
(1997), pp. 183–193. SIGPLAN Notices 32(5), May 1997. 25

Young, C. and M. D. Smith (1998, November 30–December 2,). Better
global scheduling using path profiles. In Proceedings of the 31st Annual
International Symposium on Microarchitecture, Dallas, Texas, pp. 115–123.
IEEE Computer Society TC-MICRO and ACM SIGMICRO. 25

Young, C. and M. D. Smith (1999, September). Static correlated branch
prediction. ACM Transactions on Programming Languages and Sys-
tems 21 (5), 1028–1075. 32

	Contents
	List of Figures
	List of Tables
	Introduction
	The Functions of a Code Generator
	Reusable Code Generation
	Requirements for Reusability
	UNCOLs
	Outline of Dissertation
	Terminology

	Compiler Architecture Using C--
	Compiled Programming Languages
	An Overview of C--
	Types
	Functions
	Expressions
	Local Memory
	Memory Access
	Calling Conventions

	Static Data
	Continuations
	An Example

	High-level Annotations for Intermediate Languages
	Annotations for Low-Level Optimisations
	Control Flow of Function Calls
	Control Flow due to Exceptions
	Branch Prediction
	Data Prefetching
	Pointer Maps for Accurate Garbage Collection
	Memory Disambiguation
	Side Effects of Functions

	Related Work

	C-- Support for Run-time Services
	Introduction
	Compiler Support for Run-Time Services
	Accurate Garbage Collection
	Exception Handling
	Static Information to Support the Run-Time System

	The C-- Run-Time Interface
	Determining Which C-- Variables are Roots
	Implementing the C-- run-time interface

	C-- Run-Time Support for Generational Stack Collection
	Compile-Time Pointer Maps
	Support for Debugging

	The Problem of Language Interoperability
	Foreign Function Interfaces and Stacks
	Foreign Calls and Garbage Collection
	Foreign Calls and Exception Handling

	C-- Run-Time Support for Foreign Calls
	Walking a Mixed Stack
	Saving the C-- State

	Support for Multi-Threaded Languages
	Related Work

	Compiling C--
	Compiling C--
	The C-- Calling Convention and Tail Call Optimisation
	C-- Continuations
	Run-time Representation of C-- Continuations
	Reserved Machine Registers
	A Better Implementation

	Optimising C--
	Optimising Parameter Passing
	Optimising Register Parameters of Known Functions
	Optimising Overflow Parameters of Known Functions
	Tail-Recursion Optimisation
	Conditional Moves

	Targeting C--
	Translating C to C--
	Indirect gotos and Labels as Values
	In-Memory Locals
	Tail Call Optimisation in C
	Unsigned Integer Loads in C--
	Unsupported Features of C

	Translating Caml to C--
	Translating LLFL into C--
	Exceptions and Exception Handling in Caml
	Caml Exceptions in C--

	Generating Target-dependent C--
	Targeting the Caml RTS to C--

	Evaluation
	Compiler Construction Using C--
	Performance Evaluation
	C Benchmarks
	Caml Benchmarks

	Summary

	Proposed Extensions to C--
	The volatile Type Qualifier
	C-- Extensions for Performance

	Conclusions
	Summary of Contributions
	Directions for Future Research
	Debugging
	Heap-allocated Activations
	Type Systems to Express Program Properties
	Annotations for Mobile Intermediate Representations

	Syntax of C--
	Comparing C-- to MLRISC
	Bibliography

