5 research outputs found

    Security Threats in Software Defined Mobile Clouds (SDMC)

    Get PDF
    Future Internet comprises of emerging ICT mega-trends (e.g., mobile, social, cloud, and big data) commands new challenges like ubiquitous accessibility, high bandwidth, and dynamic management to meet the data tsunami requirements. In the recent years, the rapid growth of smartphone business is highly evidenced due to its versatile usage irrespective of location, personality or context. Despite of increased smartphone usage, exploiting its full potential becomes very difficult owing to its typical issues such as resource scarcity, mobility and more prominently the security. Software Defined Networking (SDN), an emerging wireless network paradigm can make use of rich mobile cloud functionalities such as traffic management, load balancing, routing, and firewall configuration over physical abstraction of control planes from data planes. Hence SDN leads to a clear roadmap to Software Security control in Mobile Clouds (SDMC). Further it can be extended to a level of Security prevention. To address in this direction, this paper surveys the relevant backgrounds of the existing state-of-art works to come up with all possible SDMC threats and its countermeasures

    Cost-Based Placement of Virtualized Deep Packet Inspection Functions in SDN

    No full text

    A monitoring and threat detection system using stream processing as a virtual function for big data

    Get PDF
    The late detection of security threats causes a significant increase in the risk of irreparable damages, disabling any defense attempt. As a consequence, fast realtime threat detection is mandatory for security guarantees. In addition, Network Function Virtualization (NFV) provides new opportunities for efficient and low-cost security solutions. We propose a fast and efficient threat detection system based on stream processing and machine learning algorithms. The main contributions of this work are i) a novel monitoring threat detection system based on stream processing; ii) two datasets, first a dataset of synthetic security data containing both legitimate and malicious traffic, and the second, a week of real traffic of a telecommunications operator in Rio de Janeiro, Brazil; iii) a data pre-processing algorithm, a normalizing algorithm and an algorithm for fast feature selection based on the correlation between variables; iv) a virtualized network function in an open-source platform for providing a real-time threat detection service; v) near-optimal placement of sensors through a proposed heuristic for strategically positioning sensors in the network infrastructure, with a minimum number of sensors; and, finally, vi) a greedy algorithm that allocates on demand a sequence of virtual network functions.A detecção tardia de ameaças de segurança causa um significante aumento no risco de danos irreparáveis, impossibilitando qualquer tentativa de defesa. Como consequência, a detecção rápida de ameaças em tempo real é essencial para a administração de segurança. Além disso, A tecnologia de virtualização de funções de rede (Network Function Virtualization - NFV) oferece novas oportunidades para soluções de segurança eficazes e de baixo custo. Propomos um sistema de detecção de ameaças rápido e eficiente, baseado em algoritmos de processamento de fluxo e de aprendizado de máquina. As principais contribuições deste trabalho são: i) um novo sistema de monitoramento e detecção de ameaças baseado no processamento de fluxo; ii) dois conjuntos de dados, o primeiro ´e um conjunto de dados sintético de segurança contendo tráfego suspeito e malicioso, e o segundo corresponde a uma semana de tráfego real de um operador de telecomunicações no Rio de Janeiro, Brasil; iii) um algoritmo de pré-processamento de dados composto por um algoritmo de normalização e um algoritmo para seleção rápida de características com base na correlação entre variáveis; iv) uma função de rede virtualizada em uma plataforma de código aberto para fornecer um serviço de detecção de ameaças em tempo real; v) posicionamento quase perfeito de sensores através de uma heurística proposta para posicionamento estratégico de sensores na infraestrutura de rede, com um número mínimo de sensores; e, finalmente, vi) um algoritmo guloso que aloca sob demanda uma sequencia de funções de rede virtual

    Resource Allocation in SDN/NFV-Enabled Core Networks

    Get PDF
    For next generation core networks, it is anticipated to integrate communication, storage and computing resources into one unified, programmable and flexible infrastructure. Software-defined networking (SDN) and network function virtualization (NFV) become two enablers. SDN decouples the network control and forwarding functions, which facilitates network management and enables network programmability. NFV allows the network functions to be virtualized and placed on high capacity servers located anywhere in the network, not only on dedicated devices in current networks. Driven by SDN and NFV platforms, the future network architecture is expected to feature centralized network management, virtualized function chaining, reduced capital and operational costs, and enhanced service quality. The combination of SDN and NFV provides a potential technical route to promote the future communication networks. It is imperative to efficiently manage, allocate and optimize the heterogeneous resources, including computing, storage, and communication resources, to the customized services to achieve better quality-of-service (QoS) provisioning. This thesis makes some in-depth researches on efficient resource allocation for SDN/NFV-enabled core networks in multiple aspects and dimensionality. Typically, the resource allocation task is implemented in three aspects. Given the traffic metrics, QoS requirements, and resource constraints of the substrate network, we first need to compose a virtual network function (VNF) chain to form a virtual network (VN) topology. Then, virtual resources allocated to each VNF or virtual link need to be optimized in order to minimize the provisioning cost while satisfying the QoS requirements. Next, we need to embed the virtual network (i.e., VNF chain) onto the substrate network, in which we need to assign the physical resources in an economical way to meet the resource demands of VNFs and links. This involves determining the locations of NFV nodes to host the VNFs and the routing from source to destination. Finally, we need to schedule the VNFs for multiple services to minimize the service completion time and maximize the network performance. In this thesis, we study resource allocation in SDN/NFV-enabled core networks from the aforementioned three aspects. First, we jointly study how to design the topology of a VN and embed the resultant VN onto a substrate network with the objective of minimizing the embedding cost while satisfying the QoS requirements. In VN topology design, optimizing the resource requirement for each virtual node and link is necessary. Without topology optimization, the resources assigned to the virtual network may be insufficient or redundant, leading to degraded service quality or increased embedding cost. The joint problem is formulated as a Mixed Integer Nonlinear Programming (MINLP), where queueing theory is utilized as the methodology to analyze the network delay and help to define the optimal set of physical resource requirements at network elements. Two algorithms are proposed to obtain the optimal/near-optimal solutions of the MINLP model. Second, we address the multi-SFC embedding problem by a game theoretical approach, considering the heterogeneity of NFV nodes, the effect of processing-resource sharing among various VNFs, and the capacity constraints of NFV nodes. In the proposed resource constrained multi-SFC embedding game (RC-MSEG), each SFC is treated as a player whose objective is to minimize the overall latency experienced by the supported service flow, while satisfying the capacity constraints of all its NFV nodes. Due to processing-resource sharing, additional delay is incurred and integrated into the overall latency for each SFC. The capacity constraints of NFV nodes are considered by adding a penalty term into the cost function of each player, and are guaranteed by a prioritized admission control mechanism. We first prove that the proposed game RC-MSEG is an exact potential game admitting at least one pure Nash Equilibrium (NE) and has the finite improvement property (FIP). Then, we design two iterative algorithms, namely, the best response (BR) algorithm with fast convergence and the spatial adaptive play (SAP) algorithm with great potential to obtain the best NE of the proposed game. Third, the VNF scheduling problem is investigated to minimize the makespan (i.e., overall completion time) of all services, while satisfying their different end-to-end (E2E) delay requirements. The problem is formulated as a mixed integer linear program (MILP) which is NP-hard with exponentially increasing computational complexity as the network size expands. To solve the MILP with high efficiency and accuracy, the original problem is reformulated as a Markov decision process (MDP) problem with variable action set. Then, a reinforcement learning (RL) algorithm is developed to learn the best scheduling policy by continuously interacting with the network environment. The proposed learning algorithm determines the variable action set at each decision-making state and accommodates different execution time of the actions. The reward function in the proposed algorithm is carefully designed to realize delay-aware VNF scheduling. To sum up, it is of great importance to integrate SDN and NFV in the same network to accelerate the evolution toward software-enabled network services. We have studied VN topology design, multi-VNF chain embedding, and delay-aware VNF scheduling to achieve efficient resource allocation in different dimensions. The proposed approaches pave the way for exploiting network slicing to improve resource utilization and facilitate QoS-guaranteed service provisioning in SDN/NFV-enabled networks

    Communication patterns abstractions for programming SDN to optimize high-performance computing applications

    Get PDF
    Orientador : Luis Carlos Erpen de BonaCoorientadores : Magnos Martinello; Marcos Didonet Del FabroTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa: Curitiba, 04/09/2017Inclui referências : f. 95-113Resumo: A evolução da computação e das redes permitiu que múltiplos computadores fossem interconectados, agregando seus poderes de processamento para formar uma computação de alto desempenho (HPC). As aplicações que são executadas nesses ambientes processam enormes quantidades de informação, podendo levar várias horas ou até dias para completar suas execuções, motivando pesquisadores de varias áreas computacionais a estudar diferentes maneiras para acelerá-las. Durante o processamento, essas aplicações trocam grandes quantidades de dados entre os computadores, fazendo que a rede se torne um gargalo. A rede era considerada um recurso estático, não permitindo modificações dinâmicas para otimizar seus links ou dispositivos. Porém, as redes definidas por software (SDN) emergiram como um novo paradigma, permitindoa ser reprogramada de acordo com os requisitos dos usuários. SDN já foi usado para otimizar a rede para aplicações HPC específicas mas nenhum trabalho tira proveito dos padrões de comunicação expressos por elas. Então, o principal objetivo desta tese é pesquisar como esses padrões podem ser usados para ajustar a rede, criando novas abstrações para programá-la, visando acelerar as aplicações HPC. Para atingir esse objetivo, nós primeiramente pesquisamos todos os níveis de programabilidade do SDN. Este estudo resultou na nossa primeira contribuição, a criação de uma taxonomia para agrupar as abstrações de alto nível oferecidas pelas linguagens de programação SDN. Em seguida, nós investigamos os padrões de comunicação das aplicações HPC, observando seus comportamentos espaciais e temporais através da análise de suas matrizes de tráfego (TMs). Concluímos que as TMs podem representar as comunicações, além disso, percebemos que as aplicações tendem a transmitir as mesmas quantidades de dados entre os mesmos nós computacionais. A segunda contribuição desta tese é o desenvolvimento de um framework que permite evitar os fatores da rede que podem degradar o desempenho das aplicações, tais como, sobrecarga imposta pela topologia, o desbalanceamento na utilização dos links e problemas introduzidos pela programabilidade do SDN. O framework disponibiliza uma API e mantém uma base de dados de TMs, uma para cada padrão de comunicação, anotadas com restrições de largura de banda e latência. Essas informações são usadas para reprogramar os dispositivos da rede, alocando uniformemente as comunicações nos caminhos da rede. Essa abordagem reduziu o tempo de execução de benchmarks e aplicações reais em até 26.5%. Para evitar que o código da aplicação fosse modificado, como terceira contribuição, desenvolvemos um método para identificar automaticamente os padrões de comunicação. Esse método gera texturas visuais di_erentes para cada TM e, através de técnicas de aprendizagem de máquina (ML), identifica as aplicações que estão usando a rede. Em nossos experimentos, o método conseguiu uma taxa de acerto superior a 98%. Finalmente, nós incorporamos esse método ao framework, criando uma abstração que permite programar a rede sem a necessidade de alterar as aplicações HPC, diminuindo em média 15.8% seus tempos de execução. Palavras-chave: Redes Definidas por Software, Padrões de Comunicação, Aplicações HPC.Abstract: The evolution of computing and networking allowed multiple computers to be interconnected, aggregating their processing powers to form a high-performance computing (HPC). Applications that run in these computational environments process huge amounts of information, taking several hours or even days to complete their executions, motivating researchers from various computational fields to study different ways for accelerating them. During the processing, these applications exchange large amounts of data among the computers, causing the network to become a bottleneck. The network was considered a static resource, not allowing dynamic adjustments for optimizing its links or devices. However, Software-Defined Networking (SDN) emerged as a new paradigm, allowing the network to be reprogrammed according to users' requirements. SDN has already been used to optimize the network for specific HPC applications, but no existing work takes advantage of the communication patterns expressed by those applications. So, the main objective of this thesis is to research how these patterns can be used for tuning the network, creating new abstractions for programming it, aiming to speed up HPC applications. To achieve this goal, we first surveyed all SDN programmability levels. This study resulted in our first contribution, the creation of a taxonomy for grouping the high-level abstractions offered by SDN programming languages. Next, we investigated the communication patterns of HPC applications, observing their spatial and temporal behaviors by analyzing their traffic matrices (TMs). We conclude that TMs can represent the communications, furthermore, we realize that the applications tend to transmit the same amount of data among the same computational nodes. The second contribution of this thesis is the development of a framework for avoiding the network factors that can degrade the performance of applications, such as topology overhead, unbalanced links, and issues introduced by the SDN programmability. The framework provides an API and maintains a database of TMs, one for each communication pattern, annotated with bandwidth and latency constraints. This information is used to reprogram network devices, evenly placing the communications on the network paths. This approach reduced the execution time of benchmarks and real applications up to 26.5%. To prevent the application's source code to be modified, as a third contribution of our work, we developed a method to automatically identify the communication patterns. This method generates different visual textures for each TM and, through machine learning (ML) techniques, identifies the applications using the network. In our experiments the method succeeded with an accuracy rate over 98%. Finally, we incorporate this method into the framework, creating an abstraction that allows programming the network without changing the HPC applications, reducing on average 15.8% their execution times. Keywords: Software-Defined Networking, Communication Patterns, HPC Applications
    corecore