4 research outputs found

    BioReader: a text mining tool for performing classification of biomedical literature

    Get PDF
    Abstract Background Scientific data and research results are being published at an unprecedented rate. Many database curators and researchers utilize data and information from the primary literature to populate databases, form hypotheses, or as the basis for analyses or validation of results. These efforts largely rely on manual literature surveys for collection of these data, and while querying the vast amounts of literature using keywords is enabled by repositories such as PubMed, filtering relevant articles from such query results can be a non-trivial and highly time consuming task. Results We here present a tool that enables users to perform classification of scientific literature by text mining-based classification of article abstracts. BioReader (Biomedical Research Article Distiller) is trained by uploading article corpora for two training categories - e.g. one positive and one negative for content of interest - as well as one corpus of abstracts to be classified and/or a search string to query PubMed for articles. The corpora are submitted as lists of PubMed IDs and the abstracts are automatically downloaded from PubMed, preprocessed, and the unclassified corpus is classified using the best performing classification algorithm out of ten implemented algorithms. Conclusion BioReader supports data and information collection by implementing text mining-based classification of primary biomedical literature in a web interface, thus enabling curators and researchers to take advantage of the vast amounts of data and information in the published literature. BioReader outperforms existing tools with similar functionalities and expands the features used for mining literature in database curation efforts. The tool is freely available as a web service at http://www.cbs.dtu.dk/services/BioReade

    Cost sensitive hierarchical document classification to triage PubMed abstracts for manual curation

    Get PDF
    Abstract Background The Immune Epitope Database (IEDB) project manually curates information from published journal articles that describe immune epitopes derived from a wide variety of organisms and associated with different diseases. In the past, abstracts of scientific articles were retrieved by broad keyword queries of PubMed, and were classified as relevant (curatable) or irrelevant (not curatable) to the scope of the database by a NaĂŻve Bayes classifier. The curatable abstracts were subsequently manually classified into categories corresponding to different disease domains. Over the past four years, we have examined how to further improve this approach in order to enhance classification performance and to reduce the need for manual intervention. Results Utilizing 89,884 abstracts classified by a domain expert as curatable or uncuratable, we found that a SVM classifier outperformed the previously used NaĂŻve Bayes classifier for curatability predictions with an AUC of 0.899 and 0.854, respectively. Next, using a non-hierarchical and a hierarchical application of SVM classifiers trained on 22,833 curatable abstracts manually classified into three levels of disease specific categories we demonstrated that a hierarchical application of SVM classifiers outperformed non-hierarchical SVM classifiers for categorization. Finally, to optimize the hierarchical SVM classifiers' error profile for the curation process, cost sensitivity functions were developed to avoid serious misclassifications. We tested our design on a benchmark dataset of 1,388 references and achieved an overall category prediction accuracy of 94.4%, 93.9%, and 82.1% at the three levels of categorization, respectively. Conclusions A hierarchical application of SVM algorithms with cost sensitive output weighting enabled high quality reference classification with few serious misclassifications. This enabled us to significantly reduce the manual component of abstract categorization. Our findings are relevant to other databases that are developing their own document classifier schema and the datasets we make available provide large scale real-life benchmark sets for method developers

    Discovering lesser known molecular players and mechanistic patterns in Alzheimer's disease using an integrative disease modelling approach

    Get PDF
    Convergence of exponentially advancing technologies is driving medical research with life changing discoveries. On the contrary, repeated failures of high-profile drugs to battle Alzheimer's disease (AD) has made it one of the least successful therapeutic area. This failure pattern has provoked researchers to grapple with their beliefs about Alzheimer's aetiology. Thus, growing realisation that Amyloid-β and tau are not 'the' but rather 'one of the' factors necessitates the reassessment of pre-existing data to add new perspectives. To enable a holistic view of the disease, integrative modelling approaches are emerging as a powerful technique. Combining data at different scales and modes could considerably increase the predictive power of the integrative model by filling biological knowledge gaps. However, the reliability of the derived hypotheses largely depends on the completeness, quality, consistency, and context-specificity of the data. Thus, there is a need for agile methods and approaches that efficiently interrogate and utilise existing public data. This thesis presents the development of novel approaches and methods that address intrinsic issues of data integration and analysis in AD research. It aims to prioritise lesser-known AD candidates using highly curated and precise knowledge derived from integrated data. Here much of the emphasis is put on quality, reliability, and context-specificity. This thesis work showcases the benefit of integrating well-curated and disease-specific heterogeneous data in a semantic web-based framework for mining actionable knowledge. Furthermore, it introduces to the challenges encountered while harvesting information from literature and transcriptomic resources. State-of-the-art text-mining methodology is developed to extract miRNAs and its regulatory role in diseases and genes from the biomedical literature. To enable meta-analysis of biologically related transcriptomic data, a highly-curated metadata database has been developed, which explicates annotations specific to human and animal models. Finally, to corroborate common mechanistic patterns — embedded with novel candidates — across large-scale AD transcriptomic data, a new approach to generate gene regulatory networks has been developed. The work presented here has demonstrated its capability in identifying testable mechanistic hypotheses containing previously unknown or emerging knowledge from public data in two major publicly funded projects for Alzheimer's, Parkinson's and Epilepsy diseases
    corecore