18,324 research outputs found

    Conservative and disruptive modes of adolescent change in human brain functional connectivity

    Get PDF
    Adolescent changes in human brain function are not entirely understood. Here, we used multiecho functional MRI (fMRI) to measure developmental change in functional connectivity (FC) of resting-state oscillations between pairs of 330 cortical regions and 16 subcortical regions in 298 healthy adolescents scanned 520 times. Participants were aged 14 to 26 y and were scanned on 1 to 3 occasions at least 6 mo apart. We found 2 distinct modes of age-related change in FC: “conservative” and “disruptive.” Conservative development was characteristic of primary cortex, which was strongly connected at 14 y and became even more connected in the period from 14 to 26 y. Disruptive development was characteristic of association cortex and subcortical regions, where connectivity was remodeled: connections that were weak at 14 y became stronger during adolescence, and connections that were strong at 14 y became weaker. These modes of development were quantified using the maturational index (MI), estimated as Spearman’s correlation between edgewise baseline FC (at 14 y, FC14) and adolescent change in FC (ΔFC14−26), at each region. Disruptive systems (with negative MI) were activated by social cognition and autobiographical memory tasks in prior fMRI data and significantly colocated with prior maps of aerobic glycolysis (AG), AG-related gene expression, postnatal cortical surface expansion, and adolescent shrinkage of cortical thickness. The presence of these 2 modes of development was robust to numerous sensitivity analyses. We conclude that human brain organization is disrupted during adolescence by remodeling of FC between association cortical and subcortical areas

    Brain regions concerned with perceptual skills in tennis: An fMRI study

    Get PDF
    Sporting performance makes special demands on perceptual skills, but the neural mechanisms underlying such performance are little understood. We address this issue, making use of fMRI to identify the brain areas activated in viewing and responding to video sequences of tennis players, filmed from the opponent’s perspective. In a block-design, fMRI study, 9 novice tennis players watched video clips of tennis play. The main stimulus conditions were (1) serve sequences, (2) non-serve behaviour (ball bouncing) and (3) static control sequences. A button response was required indicating the direction of serve (left or right for serve sequences, middle button for non-serve and static sequences). By comparing responses to the three stimulus conditions, it was possible to identify two groups of brain regions responsive to different components of the task. Areas MT/MST and STS in the posterior part of the temporal lobe responded either to serve and to non-serve stimuli, relative to static controls. Serve sequences produced additional regions of activation in parietal lobe (bilateral IPL, right SPL) and in right frontal cortex (IFGd, IFGv), and these areas were not activated by non-serve sequences. These regions of parietal and frontal cortex have been implicated in a “mirror neuron” network in the human brain. It is concluded that the task of judgement of serve direction produces two different patterns of response: activations in MT/MST and STS concerned with primarily with the analysis of motion and body actions, and activations in parietal and frontal cortex associated specifically with the task of identification of direction of serve

    Gearing up for action: attentive tracking dynamically tunes sensory and motor oscillations in the alpha and beta band

    Get PDF
    Allocation of attention during goal-directed behavior entails simultaneous processing of relevant and attenuation of irrelevant information. How the brain delegates such processes when confronted with dynamic (biological motion) stimuli and harnesses relevant sensory information for sculpting prospective responses remains unclear. We analyzed neuromagnetic signals that were recorded while participants attentively tracked an actor’s pointing movement that ended at the location where subsequently the response-cue indicated the required response. We found the observers’ spatial allocation of attention to be dynamically reflected in lateralized parieto-occipital alpha (8-12Hz) activity and to have a lasting influence on motor preparation. Specifically, beta (16-25Hz) power modulation reflected observers’ tendency to selectively prepare for a spatially compatible response even before knowing the required one. We discuss the observed frequency-specific and temporally evolving neural activity within a framework of integrated visuomotor processing and point towards possible implications about the mechanisms involved in action observation

    Physiological basis and image processing in functional magnetic resonance imaging: Neuronal and motor activity in brain

    Get PDF
    Functional magnetic resonance imaging (fMRI) is recently developing as imaging modality used for mapping hemodynamics of neuronal and motor event related tissue blood oxygen level dependence (BOLD) in terms of brain activation. Image processing is performed by segmentation and registration methods. Segmentation algorithms provide brain surface-based analysis, automated anatomical labeling of cortical fields in magnetic resonance data sets based on oxygen metabolic state. Registration algorithms provide geometric features using two or more imaging modalities to assure clinically useful neuronal and motor information of brain activation. This review article summarizes the physiological basis of fMRI signal, its origin, contrast enhancement, physical factors, anatomical labeling by segmentation, registration approaches with examples of visual and motor activity in brain. Latest developments are reviewed for clinical applications of fMRI along with other different neurophysiological and imaging modalities

    Annotated Bibliography: Anticipation

    Get PDF

    Heschl's gyrus is more sensitive to tone level than non-primary auditory cortex

    Get PDF
    Previous neuroimaging studies generally demonstrate a growth in the cortical response with an increase in sound level. However, the details of the shape and topographic location of such growth remain largely unknown. One limiting methodological factor has been the relatively sparse sampling of sound intensities. Additionally, most studies have either analysed the entire auditory cortex without differentiating primary and non-primary regions or have limited their analyses to Heschl's gyrus (HG). Here, we characterise the pattern of responses to a 300-Hz tone presented in 6-dB steps from 42 to 96 dB sound pressure level as a function of its sound level, within three anatomically defined auditory areas; the primary area, on HG, and two non-primary areas, consisting of a small area lateral to the axis of HG (the anterior lateral area, ALA) and the posterior part of auditory cortex (the planum temporale, PT). Extent and magnitude of auditory activation increased non-linearly with sound level. In HG, the extent and magnitude were more sensitive to increasing level than in ALA and PT. Thus, HG appears to have a larger involvement in sound-level processing than does ALA or PT

    Monitoring cortical excitability during repetitive transcranial magnetic stimulation in children with ADHD: a single-blind, sham-controlled TMS-EEG study

    Get PDF
    Background: Repetitive transcranial magnetic stimulation (rTMS) allows non-invasive stimulation of the human brain. However, no suitable marker has yet been established to monitor the immediate rTMS effects on cortical areas in children. Objective: TMS-evoked EEG potentials (TEPs) could present a well-suited marker for real-time monitoring. Monitoring is particularly important in children where only few data about rTMS effects and safety are currently available. Methods: In a single-blind sham-controlled study, twenty-five school-aged children with ADHD received subthreshold 1 Hz-rTMS to the primary motor cortex. The TMS-evoked N100 was measured by 64-channel-EEG pre, during and post rTMS, and compared to sham stimulation as an intraindividual control condition. Results: TMS-evoked N100 amplitude decreased during 1 Hz-rTMS and, at the group level, reached a stable plateau after approximately 500 pulses. N100 amplitude to supra-threshold single pulses post rTMS confirmed the amplitude reduction in comparison to the pre-rTMS level while sham stimulation had no influence. EEG source analysis indicated that the TMS-evoked N100 change reflected rTMS effects in the stimulated motor cortex. Amplitude changes in TMS-evoked N100 and MEPs (pre versus post 1 Hz-rTMS) correlated significantly, but this correlation was also found for pre versus post sham stimulation. Conclusion: The TMS-evoked N100 represents a promising candidate marker to monitor rTMS effects on cortical excitability in children with ADHD. TMS-evoked N100 can be employed to monitor real-time effects of TMS for subthreshold intensities. Though TMS-evoked N100 was a more sensitive parameter for rTMS-specific changes than MEPs in our sample, further studies are necessary to demonstrate whether clinical rTMS effects can be predicted from rTMS-induced changes in TMS-evoked N100 amplitude and to clarify the relationship between rTMS-induced changes in TMS-evoked N100 and MEP amplitudes. The TMS-evoked N100 amplitude reduction after 1 Hz-rTMS could either reflect a globally decreased cortical response to the TMS pulse or a specific decrease in inhibition

    Functional Magnetic Resonance Imaging

    Get PDF
    "Functional Magnetic Resonance Imaging - Advanced Neuroimaging Applications" is a concise book on applied methods of fMRI used in assessment of cognitive functions in brain and neuropsychological evaluation using motor-sensory activities, language, orthographic disabilities in children. The book will serve the purpose of applied neuropsychological evaluation methods in neuropsychological research projects, as well as relatively experienced psychologists and neuroscientists. Chapters are arranged in the order of basic concepts of fMRI and physiological basis of fMRI after event-related stimulus in first two chapters followed by new concepts of fMRI applied in constraint-induced movement therapy; reliability analysis; refractory SMA epilepsy; consciousness states; rule-guided behavioral analysis; orthographic frequency neighbor analysis for phonological activation; and quantitative multimodal spectroscopic fMRI to evaluate different neuropsychological states
    corecore