3,788 research outputs found

    Balanced Symmetric Functions over GF(p)GF(p)

    Get PDF
    Under mild conditions on n,pn,p, we give a lower bound on the number of nn-variable balanced symmetric polynomials over finite fields GF(p)GF(p), where pp is a prime number. The existence of nonlinear balanced symmetric polynomials is an immediate corollary of this bound. Furthermore, we conjecture that X(2t,2t+1lβˆ’1)X(2^t,2^{t+1}l-1) are the only nonlinear balanced elementary symmetric polynomials over GF(2), where X(d,n)=βˆ‘i1<i2<...<idxi1xi2...xidX(d,n)=\sum_{i_1<i_2<...<i_d}x_{i_1} x_{i_2}... x_{i_d}, and we prove various results in support of this conjecture.Comment: 21 page

    Two Structural Results for Low Degree Polynomials and Applications

    Get PDF
    In this paper, two structural results concerning low degree polynomials over finite fields are given. The first states that over any finite field F\mathbb{F}, for any polynomial ff on nn variables with degree d≀log⁑(n)/10d \le \log(n)/10, there exists a subspace of Fn\mathbb{F}^n with dimension Ξ©(dβ‹…n1/(dβˆ’1))\Omega(d \cdot n^{1/(d-1)}) on which ff is constant. This result is shown to be tight. Stated differently, a degree dd polynomial cannot compute an affine disperser for dimension smaller than Ξ©(dβ‹…n1/(dβˆ’1))\Omega(d \cdot n^{1/(d-1)}). Using a recursive argument, we obtain our second structural result, showing that any degree dd polynomial ff induces a partition of FnF^n to affine subspaces of dimension Ξ©(n1/(dβˆ’1)!)\Omega(n^{1/(d-1)!}), such that ff is constant on each part. We extend both structural results to more than one polynomial. We further prove an analog of the first structural result to sparse polynomials (with no restriction on the degree) and to functions that are close to low degree polynomials. We also consider the algorithmic aspect of the two structural results. Our structural results have various applications, two of which are: * Dvir [CC 2012] introduced the notion of extractors for varieties, and gave explicit constructions of such extractors over large fields. We show that over any finite field, any affine extractor is also an extractor for varieties with related parameters. Our reduction also holds for dispersers, and we conclude that Shaltiel's affine disperser [FOCS 2011] is a disperser for varieties over F2F_2. * Ben-Sasson and Kopparty [SIAM J. C 2012] proved that any degree 3 affine disperser over a prime field is also an affine extractor with related parameters. Using our structural results, and based on the work of Kaufman and Lovett [FOCS 2008] and Haramaty and Shpilka [STOC 2010], we generalize this result to any constant degree
    • …
    corecore