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BALANCED SYMMETRIC FUNCTIONS OVER GF (p)

THOMAS W. CUSICK1, YUAN LI2, PANTELIMON STĂNICĂ3∗

Abstract. Under mild conditions on n, p, we give a lower bound on the num-

ber of n-variable balanced symmetric polynomials over finite fields GF (p),
where p is a prime number. The existence of nonlinear balanced symmetric
polynomials is an immediate corollary of this bound. Furthermore, we con-
jecture that X(2t, 2t+1l− 1) are the only nonlinear balanced elementary sym-
metric polynomials over GF (2), where X(d, n) =

∑
i1<i2<···<id

xi1xi2 · · ·xid
,

and we prove various results in support of this conjecture.

1. Introduction

Since symmetry guarantees that all of the input bits have equal status in a very
strong sense, symmetric Boolean functions display some interesting properties. A
lot of research about symmetry in characteristic 2 has been previously done in
[1, 3, 5, 6, 7, 9, 10, 18, 19, 20, 21, 24, 26]. On the other hand, it is natural to extend
various cryptographic ideas from GF (2) to other finite fields of characteristic > 2,
GF (p) or GF (pn), p being a prime number. For example, [16] and [25] studied the
correlation immune and resilient functions on GF (p). Also, [8] and [14] investigated
the generalized bent functions on GF (pn). In [23], Li and Cusick first introduced
the strict avalanche criterion over GF (p). In [24], they generalized most results of
[7] and determined all the linear structures of symmetric functions over GF (p).

Balancedness is a desirable requirement of functions which will be used in cryp-
tography. In this paper, by an enumerating method, we give a lower bound for
the number of balanced symmetric polynomials over GF (p), and as an immediate
consequence, we show the existence of nonlinear balanced symmetric polynomials.
We did not find (even conjecturally) any simple characterization of the algebraic
normal form of nonlinear balanced symmetric polynomials even for p = 2. However,
we do make substantial progress in the binary case if the polynomial is elementary
symmetric (Section 5 below). We prove some results toward the conjecture that the
polynomials X(2t, 2t+1ℓ−1) are the only nonlinear balanced elementary symmetric
polynomials, where X(d, n) =

∑
i1<i2<···<id

xi1xi2 · · ·xid
.

Date: February 2, 2008.
Key words and phrases. Cryptography, finite fields, balancedness, symmetric polynomials,

multinomial coefficients.
∗ Research supported by the Naval Postgraduate School RIP funding.

1

http://arXiv.org/abs/math/0608369v1


2 THOMAS W. CUSICK1, YUAN LI2, PANTELIMON STĂNICĂ3∗

2. Preliminaries

In this paper, p is a prime number. If f : GF (p)n −→ GF (p), then f can be
uniquely expressed in the following form, called the algebraic normal form (ANF):

f(x1, x2, . . . , xn) =

p−1∑

k1,k2,...,kn=0

ak1k2...kn
x1

k1x2
k2 · · ·xn

kn ,

where each coefficient ak1k2...kn
is a constant in GF (p).

The function f(x) is called an affine function if f(x) = a1x1 + · · · + anxn + a0.
If a0 = 0, f(x) is also called a linear function. We will denote by Fn the set of all
functions of n variables and by Ln the set of affine ones. We will call a function
nonlinear if it is not in Ln.

If f(x) ∈ Fn, then f(x) is a symmetric function if for any permutation π on
{1, 2, . . . , n}, we have f(xπ(1), xπ(2), . . . , xπ(n))=f(x1, x2, . . . , xn). The set of per-
mutations on {1, 2, . . . , n} will be denoted by Sn.

We define the following equivalence relation on GF (p)n: for any x = (x1, . . . , xn),
y = (y1, . . . , yn) in GF (p)n, we say x and y are equivalent, and write x ∼ y, if there
exists a permutation π ∈ Sn such that (y1, y2, . . . , yn)=(xπ(1), xπ(2), . . . , xπ(n)) (by
abuse of notation we write y = π(x)). Let x̃ = {y | ∃π ∈ Sn, π(x) = y}. Let x =
(x1, x2, . . . , xn) be the representative of x̃, where 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ p − 1.
Obviously, we have x̃ = ỹ ⇐⇒ x = y.

3. Enumeration Results

Definition 1. f : GF (p)n −→ GF (p) is balanced if the probability prob(f = k) = 1
p

for any k = 0, 1, . . . , p − 1.

As an immediate consequence, f is balanced if and only if #{x ∈ GF (p)n|f(x) =
k} = pn−1.

Using the equivalence relation of the previous section, we get that f : GF (p)n −→
GF (p) is symmetric if f(x) = f(y) whenever x̃ = ỹ. Let C(n, k) = n!

k!(n−k)! if

0 ≤ k ≤ n and 0 otherwise be the usual binomial coefficients. Then we have

Lemma 1. The number of n-variable symmetric polynomials over GF (p) is

pC(p+n−1,n).

Proof. The number of different vector classes x̃ is the number of solutions of the
linear equation i0 + i1 + · · · + ip−1 = n, where ik is the number of times k appears
in x. We know that the number of solutions to the previous linear diophantine
equation is the same as the number of n-combinations of a set with p elements,
that is C(p + n − 1, n) (see [4, p. 69]). Since a symmetric function f(x) has the
same value for any element of x̃, the lemma is proved. �

Lemma 2. We have

p−1∏

k=0

C((k + 1)a, a) =
(pa)!

(a!)p
.

Proof. It is a straightforward computation

p−1∏

k=0

C((k + 1)a, a) =
a!

a!

(2a)!

a!a!

(3a)!

a!(2a)!
· · ·

(pa)!

a!((p − 1)a)!
=

(pa)!

(a!)p
.

�
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Lemma 3. The number of n-variable balanced polynomials over GF (p) is

(pn)!

(pn−1!)p
.

Proof. The number we are looking for is

C(pn, pn−1)C(pn − pn−1, pn−1) · · ·C(pn − (p − 1)pn−1, pn−1) =
(pn)!

(pn−1!)p
,

using Lemma 2, and the claim is proved. �

Let x = (0, . . . , 0︸ ︷︷ ︸
i0

, 1, . . . , 1︸ ︷︷ ︸
i1

, . . . , p − 1, . . . , p − 1︸ ︷︷ ︸
ip−1

), where i0 + i1 + · · · + ip−1 = n,

0 ≤ ij ≤ n, j = 0, 1, . . . , p − 1. The cardinality of the set x̃ is the value of the

multinomial coefficient C(n, i0, i1, . . . , ip−2) = n!
i0!i1!···ip−1!

. We have the following

widely known multinomial expansion lemma.

Lemma 4. [4, p. 123] We have the following formula

(t0 + t1 + · · · + tp−1)
n =

∑

i0+i1+···+ip−1=n

C(n, i0, i1, . . . , ip−2)t
i0
0 ti11 · · · t

ip−1

p−1 .

By specializing t0 = t1 = · · · = tp−1 = 1, we get the following corollary.

Corollary 1. The n-th power of p satisfies

pn =
∑

i0+i1+···+ip−1=n

C(n, i0, i1, . . . , ip−2).

From the proof of Lemma 1, we know that the number of terms in the sum in
Corollary 1 is C(p + n − 1, n). It is clear now, that to get balanced symmetric
polynomials amounts to partitioning the set of C(p + n − 1, n) many multinomial
coefficients C(n, i0, i1, . . . , ip−2) into p groups, the sum of each group being equal
to pn−1.

For a fixed solution {i0, i1, . . . , ip−1} of i0 + i1 + · · · + ip−1 = n, there are
p!

m0!m1!···mn! many ways to order it, where ij ∈ {0, 1, . . . , n}, and ml is the number

of times that l appears in {i0, . . . , ip−1}, 0 ≤ l ≤ n. Hence,

(1) m0 + m1 + · · · + mn = p, and 0m0 + 1m1 + · · · + nmn = n.

Let us consider the following map:

F : {{i0, i1, . . . , ip−1}|

p−1∑

j=0

ij = n} → {(m0, m1, . . . , mn)|
n∑

l=0

ml = p,

n∑

l=0

lml = n}

defined by
F ({i0, i1, . . . , ip−1}) = (m0, m1, . . . , mn),

where ml is as above. It is not hard to check that F is a bijection.
Now, we will partition the set of multinomial coefficients C(n, i0, . . . , ip−2) using

the following equivalence relation: C(n, i0, . . . , ip−2) and C(n, j0, . . . , jp−2) belong
to the same class if and only if j0, . . . , jp−1 is a permutation of i0, . . . , ip−1. Of
course, any element in the same class has the same value. So, we can think of F as
a map that assigns to each class the value p!

m0!m1!···mn! .

Lemma 5. Let n, p be positive integers, with p a prime number. If mi < p for
some i (and so for all i), or if gcd(n, p) = 1, then p divides p!

m0!m1!···mn! .
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Proof. Assume mi < p. By a known extension of Kummer’s result that belongs to
Dickson (see [13, Theorem D, p. 3860]) the power of p that divides the multinomial
coefficient equals the number of carries when we add m0 + m1 + · · · + mn in base
p, but the mentioned sum is equal to p, therefore the number of carries is 1. (One
can also prove the same assertion without using Dickson’s result.)

Now, assume gcd(n, p) = 1. If mi < p, the first part of the proof proves the
claim. Assume mi ≥ p. Since m0 + m1 + · · · + mn = p, we can find j such that
mj = p and m0 = · · · = mj−1 = mj+1 = · · ·mn = 0. From the definition of the
mi’s we obtain that jp = n, which is a contradiction. �

Remark 1. The two conditions mi < p, and gcd(n, p) = 1 are not equivalent
(although, it is true that gcd(n, p) = 1 implies mi < p). For instance, by taking
m0 = 3, m1 = 2, m2 = 1, m3 = 1, m4 = m5 = m6 = m7 = 0, we get m0 + m1 +
· · · + m7 = p = 7 = n = 0m0 + 1m1 + · · · + 7m7, so p = n in this case.

Since the cardinality of each multinomial coefficient class is a multiple of p, we
can divide each class into p groups with an equal number of coefficients, hence, equal
sum. Doing the same for each class, we finally partition all of the C(p + n − 1, n)
coefficients into p groups with equal sum.

For a given (m0, m1, . . . , mn), m0+m1+· · ·+mn = p, 0m0+1m1+· · ·+nmn = n,
the partition number is

C

(
p!

m0!m1! · · ·mn!
,

(p − 1)!

m0!m1! · · ·mn !

)
C

(
p!

m0!m1! · · ·mn!
−

(p − 1)!

m0!m1! · · · mn!
,

(p − 1)!

m0!m1! · · ·mn!

)
· · ·

C

(
p!

m0!m1! · · ·mn!
−

k(p − 1)!

m0!m1! · · ·mn!
,

(p − 1)!

m0!m1! · · ·mn!

)
· · ·C

(
(p − 1)!

m0!m1! · · ·mn !
,

(p − 1)!

m0!m1! · · · mn!

)
.

By Lemma 2, this product can be written as

( p!
m0!···mn! )!

(( (p−1)!
m0!···mn! )!)

p
.

In conclusion, we get our main result of this section.

Theorem 1. Let N be the number of n-variable balanced symmetric functions over
GF (p). If mi < p, for all i (or gcd(n, p) = 1), then

N ≥
∏

∑n
j=0 mj=p∑

n
j=0 jmj=n

( p!
m0!···mn! )!

(( (p−1)!
m0!···mn! )!)

p
.

Next, since the linear balanced symmetric polynomials over GF (p) have the form
a(x1 + · · · + xn) + b, where a ∈ GF (p)∗ and b ∈ GF (p), we get that the number

of such functions is p(p − 1). Since (pa)!
(a!)p = a!

a!
(2a)!
a!a!

(3a)!
a!(2a)! · · ·

(pa)!
a!((p−1)a)! > 12 · · ·p =

p! ≥ p(p − 1), we have the next corollary.

Corollary 2. If n is not divisible by p, there exists a nonlinear n-variable balanced
symmetric polynomial over GF (p).

4. The balancedness of elementary symmetric polynomials over GF (2)

In this section we consider the binary case, that is, p = 2. Here, we shall try
to find all nonlinear balanced elementary symmetric polynomials. Throughout,
x = (x1, . . . , xn) and ⊕ is the addition modulo 2.
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Definition 2. For integers n and d, 1 ≤ d ≤ n we define the elementary symmetric
polynomial by

(2) X(d, n) =
∑

i1<i2<···<id

xi1xi2 · · ·xid
.

By abuse of notation, we let X(d, n)(j) be the value of X(d, n) when wt(x) = j.
Since X(d, n)(j) ≡ C(j, d) (mod 2), we get

X(d, n)(j) =
1 − (−1)C(j,d)

2
.

Because there are C(n, j) many vectors with weight j, we have the following theo-
rems.

Theorem 2. The elementary symmetric polynomial X(d, n) is balanced if and only
if ∑

0≤j≤n

C(n, j)(−1)C(j,d) = 0.

Theorem 3. If X(d, n) is balanced, then d ≤ ⌈n/2⌉.

Proof. If n is even and d ≥ n
2 + 1, then

∑

C(j,d)≡0 (mod 2)

C(n, j) > C(n, 0) + C(n, 1) + · · · + C(n, n/2) > 2n−1.

If n is odd and k ≥ n+1
2 + 1, then

∑

C(j,d)≡0 (mod 2)

C(n, j) > C(n, 0) + C(n, 1) + · · · + C(n, (n + 1)/2) > 2n−1.

In both cases, we have
∑

0≤j≤n

C(n, j)(−1)C(j,d)

=
∑

C(j,d)≡0 (mod 2)

C(n, j) −
∑

C(j,d)≡1 (mod 2)

C(n, j)

=
∑

C(j,d)≡0 (mod 2)

C(n, j) −


2n −

∑

C(j,d)≡0 (mod 2)

C(n, j)




= 2




∑

C(j,d)≡0 (mod 2)

C(n, j) − 2n−1


 > 0,

contradicting Theorem 2. �

Therefore, we see from Theorem 2 that the existence of balanced elementary
symmetric polynomials is related to the problem of bisecting binomial coefficients
(defined below). In [6], two of us found some computational results about such
bisections, which results we shall describe below. (We mention here that the au-
thors of [20] found the number of solutions but without the explicit solutions.) It
was suspected that the existence of nontrivial binomial coefficient bisections (as
in [6]) may cause difficulties in the study of the existence of balanced symmetric
polynomials, but we conjecture that this is not true for the elementary symmetric
case.
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We begin with

Definition 3. [6] If
∑n

i=0 δiC(n, i) = 0, δi ∈ {−1, 1}, i = 0, 1, . . . , n, we call
(δ0, . . . , δn) a solution of the equation

(3)

n∑

i=0

xiC(n, i) = 0, xi ∈ {−1, 1}.

In fact, whenever we get a solution of (3), we get a bisection of binomial co-
efficients, that is, we find A, B such that A ∪ B = {0, 1, . . . , n}, A ∩ B = ∅,∑

i∈A C(n, i) =
∑

i∈B C(n, i) = 2n−1.
Obviously, if n is even, then ±(1,−1, 1,−1, . . . , 1) are two solutions of (3). If

n is odd, then (δ0, . . . , δn−1
2

,−δn−1
2 −1, . . . ,−δ0) are 2

n+1
2 solutions of (3). We call

these trivial solutions.
Mitchell [19] mentioned the nontrivial solutions for n = 8, 13. In [6], with a C++

program, we found all solutions of (3) when n ≤ 28. Nontrivial solutions exist if and
only if n = 8, 13, 14, 20, 24, 26. So, here we ask the question of determining necessary
and sufficient conditions on the parameter n such that there exist nonlinear balanced
symmetric polynomials on GF (2)n.

First, we recall a known result that enables one to find residues of binomial
coefficients modulo a prime p.

Lemma 6 (Lucas’ Theorem). Let n = ampm + am−1p
m−1 + · · · + a1p + a0 with

0 ≤ ai ≤ p− 1 and k = bmpm + bm−1p
m−1 + · · ·+ b1p+ b0 with 0 ≤ bi ≤ p− 1, then

C(n, k) ≡ C(am, bm) · · ·C(a1, b1) (mod p)

The next lemma can be derived from [1]. However, here we give a direct proof.

Lemma 7. For any integer d ≥ 2, the sequence {(−1)C(j,d)}∞j=0 is periodic of least

period 2[log2 d]+1.

Proof. First, recall that d has at most [log2 d] + 1 bits. For 0 ≤ i ≤ 2[log2 d]+1 − 1,
according to Lemma 6, we have C(i + 2[log2 d]+1, d) ≡ C(1, 0)C(i, d) ≡ C(i, d)
(mod 2), so the least period is a divisor of 2[log2 d]+1. On the other hand, 1 = C(d, d)
and C(d + 2[log2 d], d) ≡ C(1, 0)C(0, 1) · · · ≡ 0 (mod 2), which implies that 2[log2 d]

cannot be a period. The lemma is proved. �

With the help of Lemma 7, we get the following computational results. The list
could easily be extended.

Lemma 8. We have

{ 1−(−1)C(j,2)

2 }∞j=0 = 0011

{ 1−(−1)C(j,3)

2 }∞j=0 = 0001

{ 1−(−1)C(j,4)

2 }∞j=0 = 00001111

{ 1−(−1)C(j,5)

2 }∞j=0 = 00000101

{ 1−(−1)C(j,6)

2 }∞j=0 = 00000011

{ 1−(−1)C(j,7)

2 }∞j=0 = 00000001

{ 1−(−1)C(j,8)

2 }∞j=0 = 0000000011111111

{ 1−(−1)C(j,9)

2 }∞j=0 = 0000000001010101



7

{ 1−(−1)C(j,10)

2 }∞j=0 = 0000000000110011

{ 1−(−1)C(j,11)

2 }∞j=0 = 0000000000010001

{ 1−(−1)C(j,12)

2 }∞j=0 = 0000000000001111

{ 1−(−1)C(j,13)

2 }∞j=0 = 0000000000000101

{ 1−(−1)C(j,14)

2 }∞j=0 = 0000000000000011

Theorem 4. If t, l are positive integers, then X(2t, 2t+1l − 1) is balanced.

Proof. First, C(j, 2t) = 0 when 0 ≤ j ≤ 2t − 1. By Lucas’ Theorem, we have

C(j, 2t) ≡ 1 (mod 2) when 2t ≤ j ≤ 2t+1 − 1.

By Lemma 7, the period of {(−1)C(j,2t)}∞j=0 is 2t+1. Hence, we get the sequence

{(−1)C(j,2t)}2t+1l−1
j=0 by repeating + + · · ·+︸ ︷︷ ︸

2t

−− · · ·−︸ ︷︷ ︸
2t

exactly l times. Obviously

{(−1)C(j,2t)}2t+1l−1
j=0 is a (trivial) solution of the equation

∑n

i=0 xiC(n, i) = 0 when

n = 2t+1l − 1. Using Theorem 2 we obtain our result. �

We conjecture that the functions in Theorem 4 are the only balanced ones.
Conjecture 1. There are no nonlinear balanced elementary symmetric polynomials
except for X(2t, 2t+1ℓ − 1), where t and ℓ are any positive integers.

5. Results Concerning Conjecture 1

The remainder of the paper will be devoted to the study of Conjecture 1. A
Boolean function f(x) in n variables is said to satisfy the Strict Avalanche Criterion
(“is SAC” for short) if changing any one of the n bits in the input x results in the
output of the function being changed for exactly half of the 2n−1 vectors x with
the changed input bit. The SAC concept is relevant for our work because of

Lemma 9. The function f(x) = X(d, n) is SAC if and only if X(d − 1, n − 1) is
balanced.

Proof. By definition, f is SAC if and only if

f(x)⊕f(x⊕a) is balanced for all a ∈ GF (2)n, with wt(a) = 1.

We have f(x)⊕f(x⊕(0, . . . , 0, 1)) = X(d − 1, n− 1), so the lemma is proved. �

We previously mentioned that any symmetric function is completely determined
by the weight of its input, that is, f(x) = vf (wt(x)). Moreover, recall the usual
algebraic normal form (ANF) of a Boolean function f in n variables

f(x1, . . . , xn) =

n⊕

i=0

λf (i)
⊕

u,wt(u)=i

n∏

j=1

x
uj

j ,

where vf (i) =
⊕

j�i

λf (j), and λf (i) =
⊕

j�i

vf (j), over GF (2) (j � i means that

the binary expansion of j is less than the binary expansion of i, in lexicographical
order) (see [1, Propositions 1 and 2, p. 2792]).

The ANF of a symmetric function becomes

(4) f(x1, . . . , xn) =

n⊕

d=0

λf (d)X(d, n),
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in our notations. Further, when f is an elementary symmetric function, then
λf (d) = 1 is the only nonzero coefficient in the representation (4). Moreover,

(5) vf (i) =
⊕

j�i

λf (j) =

{
λf (d), if d � i

0, otherwise.

We need the following further lemmas. We define the well known Walsh trans-
form Wf (w) by

Wf (w) =
∑

x∈Z
n
2

(−1)f(x)+x·w.

Lemma 10. A Boolean function f in n variables is SAC if and only if for every
vector u with wt(u) = 1 and every vector v, we have

∑

w�ū

Wf (w⊕v)2 = 2wt(ū)+n.

Proof. This is a special case of Proposition 1 of Carlet [2, p. 35]. �

Lemma 11. If f(x) in n variables is SAC, then

(6)
∑

w:wn=0

Wf (w)2 =
∑

w:wn=1

Wf (w)2 = 22n−1.

Proof. We use Lemma 10 with v = 0 and u = (0, . . . , 0, 1). It follows that wt(ū) =
n−1, so the first sum in (6) equals 22n−1. The two sums add up to 22n by Parseval’s
Theorem, so the second sum is also 22n−1. �

Lemma 12. If f(x) = X(d, n) is SAC and d is odd, then

(7) Wf (0) = 2n − 2 wt(f) and Wf (1) = 2 wt(f).

Proof. The first equation in (7) is clear for any f , whether or not d is odd.
For the second equation, we observe that by (5) our hypotheses imply that

vf (k) = 0 for all even k. Since

Wf (0) =

n∑

k=0

(−1)vf (k)C(n, k) and Wf (1) =

n∑

k=0

(−1)vf (k)+kC(n, k),

a computation gives
Wf (0) + Wf (1) = 2n.

Now the second equation in (7) follows from the first one. �

We define

A = 0, 0, 1, 1; Ā = 1, 1, 0, 0; B = 0, 1, 0, 1; B̄ = 1, 0, 1, 0;

C = 0, 1, 1, 0; C̄ = 1, 0, 0, 1; D = 0, 0, 0, 0; D̄ = 1, 1, 1, 1.
(8)

The next two lemmas are used in the proof of our Theorem 5.

Lemma 13. (Folklore Lemma [22, Lemma 3.7.2]) Any affine function f on n
variables, n ≥ 2, is a linear string of length 2n made up of 4-bit blocks I1, . . . , I2n−2

given as follows:

1. The first block I1 is one of A, B, C, D, Ā, B̄, C̄ or D̄.
2. The second block I2 is I1 or Ī1.
3. The next two blocks I3, I4 are I1, I2 or Ī1, Ī2.
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· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
n − 1. The 2n−3 blocks I2n−3+1, . . . , I2n−2 are I1, . . . , I2n−3 or Ī1, ..., Ī2n−3 .

Lemma 14. We have
∑

x,wt(x) even

(−1)x·w = 0 for all w 6= 0 or 1.

Proof. Let E(w) denote the 2n−1-vector of bits x·w (mod 2), where x runs through
the n-vectors x of even weight in lexicographical order. Thus E(w) lists the expo-
nents in the sum in the lemma. Consider the 2n−1 by n array of the vectors x with
even weight, taken in lexicographical order. By the Folklore Lemma, each column
in this array is a 2n−1-vector which gives the truth table of a nonconstant linear
function in n − 1 variables. In fact, taking the columns left to right, the functions
are simply x1, x2, . . . , xn−1, x1⊕x2⊕ · · · ⊕xn−1. The vector sum of any subset of at
least one and at most n− 1 of the n columns (corresponding to w 6= 0 or 1) is thus
the truth table of a nonconstant linear function and so it is balanced. Each vector
E(w) is one of these vector sums, so the sum in the lemma is 0. �

Remark 2. The sum in Lemma 13 is the sum of the Krawtchouk polynomials [17,
pp. 130 and 150–153] (variable y = wt(w))

Pk(y, n) =
∑

x,wt(x)=k

(−1)x·w =

k∑

j=0

(−1)jC(y, j)C(n − y, k − j)

of even degree k in y.

Theorem 5. If f(x) = X(d, n) has odd degree d, then Wf (w) = −Wf (w̄) for all
w 6= 0 or 1.

Proof. Let f be an elementary symmetric function of degree k, that is f = X(d, n).
We compute the Walsh transform

Wf (w) =
∑

x∈Z
n
2

(−1)f(x)+x·w

=
∑

x∈Z
n
2

(−1)f(x)+x·(1+w)

=
∑

x∈Z
n
2

(−1)f(x)+wt(x)+x·w

=

n∑

k=0

∑

x,wt(x)=k

(−1)f(x)+wt(x)+x·w

=

n∑

k=0

(−1)vf (k)+k
∑

x,wt(x)=k

(−1)x·w.

(9)
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Next, we use (5). Since d is odd, then any integer i with d � i has to be odd, as
well. It follows that vf (k) = 0, for any even integer k. Thus, (9) becomes

Wf (w) =

n∑

k=0

(−1)vf (k)+k
∑

x,wt(x)=k

(−1)x·w

=
n∑

k=0, even

(−1)vf (k)
∑

x,wt(x)=k

(−1)x·w

−
n∑

k=0, odd

(−1)vf (k)
∑

x,wt(x)=k

(−1)x·w

=
∑

x, wt(x)=even

(−1)x·w −
n∑

k=0, odd

(−1)vf (k)
∑

x, wt(x)=k

(−1)x·w.

Since

Wf (w) =

n∑

k=0, even

(−1)vf (k)
∑

x,wt(x)=k

(−1)x·w

+

n∑

k=0, odd

(−1)vf (k)
∑

x,wt(x)=k

(−1)x·w

=
∑

x, wt(x)=even

(−1)x·w +

n∑

k=0, odd

(−1)vf (k)
∑

x, wt(x)=k

(−1)x·w,

to prove Theorem 5 it will suffice to show that
∑

x,wt(x)=even

(−1)x·w = 0,

as long as w 6= 0,1, and that follows from Lemma 14. �

Theorem 6. If f(x) = X(d, n) is SAC and d is odd, then Wf (0) = Wf (1).

Proof. By Theorem 5, all of the terms except Wf (0)2 and Wf (1)2 in the two sums
in (6) cancel out (for all other w, Wf (w) is in one sum and Wf (w̄) is in the other
sum). By Lemma 12, both square roots are positive and we get Theorem 6. �

Corollary 3. If d is odd and f(x) = X(d, n) is SAC, then wt(f) = 2n−2.

Now we determine when X(d, n) is SAC. To deal with the case when d is an even
integer, by Lemma 9, it is enough to show:

Lemma 15. If d > 1 is odd, then X(d, n) is not balanced.

Proof. Formula (5) shows that when f = X(d, n) we have vf (i) = 1 if and only if
d � i. Thus we have

(10) wt(X(d, n)) =
∑

d�i,i≤n

C(n, i) ≤
∑

i odd

C(n, i) = 2n−1,

where the inequality holds because d � i and d odd implies i is odd. If d > 1, then
d � i cannot hold for all odd i ≤ n (in particular, d 6� d − 2), so the inequality in
(10) is strict. Therefore, X(d, n) is not balanced. �
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Lemma 16. Suppose d > 1 is odd. If

(11) d = 2t + 1 and n = 2t+1ℓ for some positive integers t, ℓ,

then wt(X(d, n)) = 2n−2.

Proof. First we observe

(12) wt(X(d, n)) =
∑

d�i,i≤n

C(n, i)

because of (5), which shows that when f = X(d, n) we have vf (i) = 1 if and only
if d � i. By (12), we need to show that

(13) wt(X(d, n)) =
∑

d�i, i≤n

C(n, i) = 2n−2

if and only if (11) holds. If (11) holds, the sum in (13) is
∑

2t+1�i, i≤2t+1ℓ

C(2t+1ℓ, i) =

∑

2t+1�i, i≤2t+1ℓ

(C(2t+1ℓ − 1, i) + C(2t+1ℓ − 1, i − 1)) =

∑

2t�i−1, i−1≤2t+1ℓ−1

(C(2t+1ℓ − 1, i) + C(2t+1ℓ − 1, i − 1)) =

∑

2t�j, j≤2t+1ℓ−1

C(2t+1ℓ − 1, j) = 2n−2,

(note i is never even in the first three sums, since then 2t + 1 � i is false; this
justifies the second last equality, since in the last sum j runs through disjoint pairs
of consecutive integers) where the last sum is wt(X(2t, 2t+1ℓ− 1) by (12) and so is
2n−2 by Theorem 4. Thus we have proved that (11) implies (13). �

We would like to prove the converse of the previous lemma. The following work
moves toward that goal, but does not achieve it. Next, we prove five lemmas, which
establish many cases of the converse of Lemma 16.

Lemma 17. Let n = 2t+1ℓ for some positive integers t, ℓ. If j is odd and 2t + 1 <
j < 2t+1 + 1, then wt(X(j, n)) < 2n−2.

Proof. The argument of the previous lemma shows that if (11) and (13) hold for
some given t and ℓ, then the set

S(t, ℓ) = {i : 2t + 1 � i, i ≤ 2t+1ℓ = n}

gives a set of binomial coefficients {C(n, i) : i ∈ S(t, ℓ)} whose sum is 2n−2. (It
is easy to see that S(t, ℓ) has n/4 elements, but we do not need this fact.) Now
suppose that (13) holds for n = 2t+1ℓ and for some odd d = j, say, satisfying
2t + 1 < j < 2t+1 + 1. Then wt(j) > 2, so the set

T (j, n) = {i : j � i, i ≤ 2t+1ℓ = n}

is a proper subset of S(t, ℓ). Therefore the sum of the binomial coefficients in
{C(n, i) : i ∈ T (j, n)} is < 2n−2, contradicting our assumption that (13) holds
with d = j. �
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Since we refer to it often, we include here for completeness an equation given
by Canteaut and Videau in [1] (these sums are called lacunary sums of binomial
coefficients, see [15]). Results like this concerning the binomial coefficients are very
old. Some proofs and references are given in [12].

Lemma 18. For positive integers i, n, p, we have
(14)

A2p

n (i) =
∑

0≤j≤n
j≡i (mod 2p)

C(n, j) = 2n−p+21−p

2p−1−1∑

j=1

(
2 cos

(
jπ

2p

))n

cos

(
j(n − 2i)π

2p

)

Lemma 19. Let t, r be positive integers. Suppose that a1 > a3 ≥ a5 ≥ · · · ≥ aJ ,
with J = 2K + 1, are nonnegative integers. Define the sum

T =
∑

1≤j≤J

aj sin

(
jrπ

2t+1

)
.

If T = 0, then r ≡ 0 (mod 2t+1).

Proof. Write bk = aj, for j = 2k + 1. For convenience, let α = rπ
2t+1 . Then, using

Abel’s summation formula, T becomes

T =

K∑

k=0

bk sin((2k + 1)α)

=

K−1∑

m=0

(bm − bm+1)

m∑

k=0

sin((2k + 1)α) + bK

K∑

k=0

sin((2k + 1)α).

Note that for the first term where m = 0, we have (b0 − b1) sin α 6= 0, if r 6= 0
(mod 2t+1). Also, (bm − bm+1) ≥ 0, and bK ≥ 0. The conclusion follows once we
show that

sin α and
m∑

k=0

sin((2k + 1)α)

have the same sign. Indeed

sin α
m∑

k=0

sin((2k + 1)α) =
1

2

m∑

k=0

(cos(2kα) − cos((2k + 2)α)

=
1

2
(1 − cos((2m + 2)α) ≥ 0.

The lemma is proved. �

Remark 3. Note that T above has the same sign as sin α.

Because of Theorem 3, there is no loss of generality in taking n ≥ 2(d − 1) in
our next lemma.

Lemma 20. Let r, t be positive integers, d = 2t + 1, n = 2t+1, and r 6≡ 0
(mod 2t+1). Then wt(X(d, n + r)) 6= 2n+r−2.



13

Proof. Let d := 1 + 2t be fixed. Now, using Pascal’s identity, we get that S :=
wt(X(d, n + r)) satisfies

S =
∑

d�i≤n+r

C(n + r, i) =
∑

d�i≤n+r

(C(n + r − 1, i) + C(n + r − 1, i − 1))

=
∑

d�i≤n+r−1

C(n + r − 1, i) +
∑

2t�j≤n+r−1
j even

C(n + r − 1, j)

=
∑

d�i≤n+r−2

C(n + r − 2, i) +
∑

2t�j≤n+r−1
j even

(C(n + r − 1, j) + C(n + r − 2, j))

Continuing in this manner, we obtain

S =
∑

d�i≤n+r−r

C(2t+1, i) +
∑

2t�j≤n+r−1
j even

r∑

k=1

C(n + r − k, j)

= 2n−2 +
∑

2t�j≤n+r−1
j even

r∑

k=1

C(n + r − k, j)

= 2n−2 +

r∑

k=1

∑

2t�j≤n+r−1
j even

C(n + r − k, j)

= 2n−2 +

r∑

k=1

2t−1−1∑

s=0

∑

j≡2s+2t (mod 2t+1)
0≤j≤n+r−1

C(n + r − k, j)(15)

We push further the previous identity, by computing the innermost sum. So,

∑

j≡2s+2t (mod 2t+1)
0≤j≤n+r−1

C(n + r − k, j) = A2t+1

N (2s + 2t)

in the notations of Lemma 18, where N := n + r − k. Thus, using equation (14),
we obtain

A2t+1

N (2s + 2t) = 2n+r−k−t−1 + 2−t

2t−1∑

a=1

(
2 cos

aπ

2t+1

)N

cos
a(N − 4s− 2t+1)π

2t+1
.

Since

cos
a(N − 4s − 2t+1)π

2t+1
= (−1)a cos

a(N − 4s)π

2t+1
,

we get

(16) A2t+1

N (2s + 2t) = 2n+r−k−t−1 + 2−t

2t−1∑

a=1

(−1)a
(
2 cos

aπ

2t+1

)N

cos
a(N − 4s)π

2t+1
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We obtain

S = 2n−2 +

r∑

k=1

2t−1−1∑

s=0

A2t+1

N (2s + 2t)

= 2n−2 +

r∑

k=1

2t−1−1∑

s=0

2n+r−k−t−1

+2−t

r∑

k=1

2t−1−1∑

s=0

2t−1∑

a=1

(−1)a
(
2 cos

aπ

2t+1

)N

cos
a(N − 4s)π

2t+1

= 2n−2 + 2n+r−2
r∑

k=1

2−k + 2−t

r∑

k=1

2t−1−1∑

s=0

2t−1∑

a=1

(−1)a
(
2 cos

aπ

2t+1

)N

cos
a(N − 4s)π

2t+1

= 2n+r−2 + 2−t

r∑

k=1

2t−1−1∑

s=0

2t−1∑

a=1

(−1)a
(
2 cos

aπ

2t+1

)N

cos
a(N − 4s)π

2t+1
.

Therefore, to prove our assertion, we need to show that

T : =

r∑

k=1

2t−1−1∑

s=0

2t−1∑

a=1

(−1)a
(
2 cos

aπ

2t+1

)n+r−k

cos
a(n + r − k − 4s)π

2t+1

=

r∑

k=1

2t−1∑

a=1

(−1)a
(
2 cos

aπ

2t+1

)n+r−k
2t−1−1∑

s=0

cos
a(n + r − k − 4s)π

2t+1
6= 0.

Since
a(n + r − k − 4s)π

2t+1
= aπ +

(r − k − 4s)aπ

2t+1
,

and so,

cos

(
a(n + r − k − 4s)π

2t+1

)
= (−1)a cos

(
(r − k − 4s)aπ

2t+1

)
,

we obtain

T =
r∑

k=1

2t−1∑

a=1

(
2 cos

aπ

2t+1

)n+r−k
2t−1−1∑

s=0

cos

(
(r − k − 4s)aπ

2t+1

)

Formula (17.1.1) of [11] states

(17)

N∑

s=0

cos(sx + y) = csc
x

2
cos

(
Nx

2
+ y

)
sin

(
(N + 1)x

2

)
.

Taking A = aπ
2t+1 , N = 2t−1 − 1, x = −4A, y = (r − k)A in the previous formula,

we obtain

2t−1−1∑

s=0

cos ((r − k − 4s)A) = csc(−2A) cos
(
(2t−1 − 1)(−2A) + (r − k)A

)
sin(2t−1(−2A))

= csc(2A) sin
(aπ

2

)
cos

(
−

aπ

2
+ (r − k + 2)A

)

=
1 − (−1)a

2

sin((r − k + 2)A)

sin(2A)
.
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Now, T becomes

T =

r∑

k=1

2t−1∑

a=1

1 − (−1)a

2
(2 cosA)

n+r−k sin((r − k + 2)A)

sin(2A)

=

2t−1∑

a=1

1 − (−1)a

2

(2 cosA)
n+r

sin(2A)

r∑

k=1

(2 cosA)
−k

sin((r − k + 2)A)

We evaluate the inside sum using formula (14.7.1) of [11]

N−1∑

k=1

bk sin(kx + y) = − sin y + (1 − 2b cosx + b2)−1 ·

[sin y + b sin(x − y) − bN sin(Nx + y)

+bN+1 sin((N − 1)x + y)]

with N = r + 1, b = (2 cosA)−1, x = −A, y = (r + 2)A. We get

r∑

k=1

(2 cosA)−ksin((r − k + 2)A)

= − sin((r + 2)A) + b−2(sin((r + 2)A) − b sin((r + 3)A)

−br+1 sin A + br+2 sin(2A))

= − sin((r + 2)A) + b−1(2 cosA sin((r + 2)A) − sin((r + 3)A))

−br(2 cosA sin A − sin(2A))

= − sin((r + 2)A) + 2 cosA sin((r + 1)A) = sin(rA).

and so,

T =
2t−1∑

a=1

1 − (−1)a

2
(2 cosA)n+r−1 sin(rA)

sin A

=

2t−1∑

a=1, odd

(2 cosA)
n+r−1 sin(rA)

sin A

Recall that our initial sum is

S = 2n+r−2 + 2−tT,

so we need to prove T 6= 0. Observing that

aj =

(
cos

jπ

2t+1

)2t+1+r−1

·
1

sin jπ
2t+1

strictly decreases as j increases, 1 ≤ j ≤ 2t − 1, Lemma 19 shows that T 6= 0,
thereby proving our claim. (One can prove, by a slightly more complicated method
that, in fact, T > 0, but we did not need that.) The proof of the lemma is done. �

Lemma 21. If d is odd and 2t + 1 < d ≤ 2t+1 − 1 for some positive integer t,
then wt(X(d, n)) 6= 2n−2 for any n of the form n = 2t+1ℓ + r, where ℓ is even and
0 ≤ r < 2t+1 + 2t.
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Proof. From equation (12) we have

(18) wt(X(2t + 1, n)) =
∑

k∈I(t)

∑

i≡k (mod 2t+1), i≤n

C(n, i)

where

I(t) = {k : k odd, 2t + 1 ≤ k ≤ 2t+1 − 1}

= {the largest 2t−1 odd least positive residues (mod 2t+1)}.

Let k := 2t + 2s + 1, where 0 ≤ s ≤ 2t−1 − 1, and let A2t+1

n (k) denote the inner

sum in (18). Then Lemma 18 gives (with A = jπ
2t+1 )

A2t+1

n (k) = 2n−(t+1) + 2n−t

2t−1∑

j=1

(cos A)n cos((n − 2k)A)

= 2n−(t+1) + 2n−t

2t−1∑

j=1

(−1)j(cosA)n cos ((n − 2 − 4s)A) ,

(19)

since

cos((n − 2k)A) = cos((n − 2(2t + 2s + 1))A)

= cos((n − 4s − 2)A − 2t+1A) = cos((n − 4s − 2)A − jπ)

= cos((n − 4s − 2)A) cos(jπ) + sin((n − 4s − 2)A) sin(jπ)

= (−1)j cos((n − 4s − 2)A).

If d is odd, let J(d) ⊂ I(t) be the subset of I(t), made up of the 2t−2 integers k
that satisfy d � k ≤ 2t+1 − 1 (for example, if d = 2t + 3, then J(d) contains every
other integer in I(t), starting with 2t + 3). Let n = 2t+1ℓ + r, 0 ≤ r < 2t+1 + 2t. If
r = 0, Lemma 17 implies the result. Now, assume 1 ≤ r < 2t+1 + 2t. Using (17) we

obtain (recall that A = jπ
2t+1 )

2t−1−1∑

s=0

cos (s(−4A) + (n − 2)A) = csc(−2A) cos
(
(2t−1 − 1)(−2A) + (n − 2)A

)
sin(2t−1(−2A))

= csc(2A) cos(−2tA + nA) sin

(
jπ

2

)

= csc(2A)

(
cos

(
jπ

2

)
cos(nA) + sin

(
jπ

2

)
sin(nA)

)
sin

(
jπ

2

)

= csc(2A) sin2

(
jπ

2

)
sin(nA)

=
1 − (−1)j

2
csc(2A) sin((2t+1ℓ + r)A)

=
1 − (−1)j

2
csc(2A)(−1)ℓ sin(rA).

(20)
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Certainly (with k = 2t + 2s + 1),

wt(X(d, n)) =
∑

k∈J(d)

∑

i≡k (mod 2t+1), i≤n

C(n, i)

≤
∑

k∈I(t)

A2t+1

n (k) =
2t−1−1∑

s=0

A2t+1

n (2t + 2s + 1).

Then, using (19) and (20)

2t−1−1∑

s=0

A2t+1

n (2t + 2s + 1) = 2n−2 + 2n−t

2t−1−1∑

s=0

2t−1∑

j=1

(−1)j (cosA)
n

cos ((n − 2 − 4s)A)

= 2n−2 + 2n−t

2t−1∑

j=1

(−1)j (cosA)
n

2t−1−1∑

s=0

cos ((n − 2 − 4s)A)

= 2n−2 + 2n−t

2t−1∑

j=1

(−1)ℓ+j (cosA)
n 1 − (−1)j

2

sin(rA)

sin(2A)

= 2n−2 + 2−t(−1)ℓ+1
2t−1∑

j=1,odd

(2 cosA)
n−1 sin(rA)

sin A
:= S

(21)

But the last sum is strictly positive by Lemmas 19 and 20. Therefore, if ℓ is even,
S < 2n−2, and this proves our lemma. �

Remark 4. We see that if n = 2t+1ℓ + r, ℓ odd and r < 2t, then we can write
n = 2t+1ℓ + r = 2t+1(ℓ − 1) + 2t+1 + r, with ℓ − 1 even, and 0 ≤ r′ := 2t+1 + r <
2t+1 + 2t. Thus, the only cases left unchecked in the previous lemma (which gives
many cases of Conjecture 1) are: n = 2t+1ℓ + r, ℓ odd, 2t ≤ r < 2t+1.

6. The Case wt(d) ≥ 3

Lemma 9, Corollary 3 and Lemma 20 show that Conjecture 1 holds for any
X(d, n) with d = 2t. A key fact, given in the proof of Lemma 20, is a useful
formula for wt(X(d, n)) when wt(d) = 2. We can find a similar formula when
wt(d) = 3, however it becomes substantially harder to handle.

Lemma 22. Let d := 1 + 2s + 2t, where 1 ≤ s < t and t ≥ 2. Then

wt(X(d, n)) = 2n−3 − 2−t

2t−1∑

j=1,odd

(2 cosA)n−1 sin((n − 2s)A) sin(2sA)

sin A sin(2s+1A)

− 2−s−1
2s−1∑

k=1,odd

(2 cosB)n−1 sin(nB)

sin B

(22)

Proof. Let A = jπ
2t+1 , B = kπ

2s+1 . From d � i, we get that i = 2t+1i′ + 2t + 2s+1p +

2s +2q +1, and so, i ≡ 2t +2s+1p+2s +2q +1 (mod 2t+1). Certainly the converse
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is also true. Using the previous observation,

wt(X(d, n)) =
∑

d�i≤n

C(n, i) =

2t−s−1−1∑

p=0

2s−1−1∑

q=0

A2t+1

n (2t + 2s+1p + 2s + 2q + 1)

=

2t−s−1−1∑

p=0

2s−1−1∑

q=0



2n−t−1 + 2−t

2t−1∑

j=1

(2 cosA)n cos((n − 2t+1 − 2s+2p − 2s+1 − 4q − 2)A)





= 2t−s−12s−12n−t−1 + 2−t

2t−1∑

j=1

(2 cosA)n

2t−s−1−1∑

p=0

2s−1−1∑

q=0

cos((n − 2t+1 − 2s+2p − 2s+1 − 4q − 2)A)

= 2n−3 + 2−t

2t−1∑

j=1

(2 cosA)n

2t−s−1−1∑

p=0

2s−1−1∑

q=0

cos((n − 2t+1 − 2s+2p − 2s+1 − 4q − 2)A)

(23)

using Lemma 18. Further, by using formula (17) with x = −4A, y = (n − 2t+1 −
2s+2p − 2s+1 − 2)A, N = 2s−1 − 1, the innermost sum is equal to

csc(x/2) cos(Nx/2 + y) sin((N + 1)x/2)

= csc(−2A) cos((2s−1 − 1)(−2A) + (n − 2t+1 − 2s+2p − 2s+1 − 2)A) sin(2s−1(−2A))

= csc(2A) cos((n − 2t+1 − 2s+2p − 3 · 2s)A) sin(2sA),

which is defined everywhere, since j ≤ 2t − 1. Thus,

wt(X(d, n)) = 2n−3 + 2−t

2t−1∑

j=1

(2 cosA)n−1 sin(2sA)

sin A

2t−s−1−1∑

p=0

cos((n − 2t+1 − 2s+2p − 3 · 2s)A).

(24)

Let

U := {j : j = 2t−sk, 1 ≤ k ≤ 2s − 1}

We distinguish two cases:
Case 1. Assume j ∈ U . That means that

2s+2A = 2s+2 jπ

2t+1
= 2s+2 k2t−sπ

2t+1
= 2kπ,

and using the periodicity of the cosine function, we obtain that in this case, the
innermost sum is

2t−s−1 cos((n − 2t+1 − 3 · 2s)A).

Case 2. Assume j 6∈ U . In this case, we apply again formula (17) with x = −2s+2A,
y = (n − 2t+1 − 3 · 2s)A, N = 2t−s−1 − 1, the innermost sum is equal to

csc(−2s+1A) cos((2t−s−1 − 1)(−2s+1A) + (n − 2t+1 − 3 · 2s)A) sin(2t−s−1(−2s+1A))

= csc(2s+1A) cos(−2tA + (n − 2t+1 − 2s)A) sin(2tA)

= csc(2s+1A) cos((n − 2s)A − 3jπ/2) sin(jπ/2)

= csc(2s+1A) cos((n − 2s)A + jπ/2) sin(jπ/2)
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Thus, from equation (24), we obtain (note that A = B, if j = 2t−sk; also,
2t+1A = jπ, 2sB = kπ/2)

wt(X(d, n)) = 2n−3 + 2−t

2t−1∑

j=1,j 6∈U

(2 cosA)n−1 cos((n − 2s)A + jπ/2) sin(jπ/2) sin(2sA)

sin A sin(2s+1A)

+ 2−t

2t−1∑

j=1,j∈U

(2 cosA)n−1 sin(2sA)

sin A
2t−s−1 cos((n − 3 · 2s)A − jπ)

= 2n−3 + 2−t

2t−1∑

j=1,j 6∈U

(2 cosA)n−1 cos((n − 2s)A + jπ/2) sin(jπ/2) sin(2sA)

sin A sin(2s+1A)

+ 2−s−1
2s−1∑

k=1

(2 cosB)n−1 sin(kπ/2)

sin B
cos((n − 3 · 2s)B − 2t−skπ)

= 2n−3 + 2−t

2t−1∑

j=1,j 6∈U

(2 cosA)n−1 cos((n − 2s)A + jπ/2) sin(jπ/2) sin(2sA)

sin A sin(2s+1A)

+ 2−s−1
2s−1∑

k=1

(2 cosB)n−1 sin(kπ/2)

sin B
cos(nB + kπ/2).

(25)

(The last equality follows from the periodicity of cos, and also from cos((n − 3 ·
2s)B) = cos(nB−3kπ/2) = cos(nB +kπ/2).) Further, if j 6∈ U , then sin(2s+1A) is
well defined, however sin(jπ/2) = 0, if j is even. Thus, the terms in the first sum
of the last equation of (25) are zero, unless j is odd. Then, if j is odd, we get

cos((n − 2s)A + jπ/2) sin(jπ/2)

= (cos((n − 2s)A) cos(jπ/2) − sin((n − 2s)A) sin(jπ/2)) sin(jπ/2)

= − sin((n − 2s)A).

Therefore,

wt(X(d, n)) = 2n−3 − 2−t

2t−1∑

j=1,odd

(2 cosA)n−1 sin((n − 2s)A) sin(2sA)

sin A sin(2s+1A)

+ 2−s−1
2s−1∑

k=1

(2 cosB)n−1 sin(kπ/2)

sin B
cos(nB + kπ/2)

or better, yet,

wt(X(d, n)) = 2n−3 − 2−t

2t−1∑

j=1,odd

(2 cosA)n−1 sin((n − 2s)A) sin(2sA)

sin A sin(2s+1A)

− 2−s−1
2s−1∑

k=1,odd

(2 cosB)n−1 sin(nB)

sin B

�
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In order to prove Conjecture 1, by Lemma 9 and Corollary 3 it would suffice to
show that for n ≥ 2(d − 1) (we can assume this because of Theorem 3) we have

(26) wt(X(d, n)) 6= 2n−2

for all pairs d, n except d = 2t+1, n = 2t+1ℓ, where t and ℓ are any positive integers.
Lemma 20 proves (26) when wt(d) = 2. We attempted to prove (26) when

wt(d) = 3 by using Lemma 22, but the sums in (22) were too complicated to allow
us to cover all of the cases. Certainly (22) shows that for fixed d, (26) holds for
all sufficiently large n, because the factors (cos A)n−1 and (cosB)n−1 tend to 0 as
n → ∞, which implies wt(X(d, n)) − 2n−2 < 0 for all large n. Our computations
suggest that this inequality will always hold if wt(d) is large enough. In fact, we
conjecture
Conjecture 2. If n ≥ 2(d − 1), d is fixed and wt(d) ≥ 6, then wt(X(d, n)) −
2n−2 < 0.
Acknowledgements. The authors would like to thank Prof. Jingbo Xia for the
proof of Lemma 19, which simplified their original argument.
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