200,731 research outputs found

    Test of asymptotic freedom and scaling hypothesis in the 2d O(3) sigma model

    Full text link
    The 7--particle form factors of the fundamental spin field of the O(3) nonlinear σ\sigma--model are constructed. We calculate the corresponding contribution to the spin--spin correlation function, and compare with predictions from the spectral density scaling hypothesis. The resulting approximation to the spin--spin correlation function agrees well with that computed in renormalized (asymptotically free) perturbation theory in the expected energy range. Further we observe simple lower and upper bounds for the sum of the absolute square of the form factors which may be of use for analytic estimates.Comment: 14 pages, 3 figures, late

    Low-dissipation model of three-terminal refrigerator: performance bounds and comparative analyses

    Get PDF
    [EN]In the present paper, a general non-combined model of three-terminal refrigerator beyond specific heat transfer mechanisms is established based on the low-dissipation assumption. The relation between the optimized cooling power and the corresponding coefficient of performance (COP) is analytically derived, according to which the COP at maximum cooling power (CMP) can be further determined. At two dissipation asymmetry limits, upper and lower bounds of CMP are obtained and found to be in good agreement with experimental and simulated results. Additionally, comparison of the obtained bounds with previous combined model is presented. In particular it is found that the upper bounds are the same, whereas the lower bounds are quite different. This feature indicates that the claimed universal equivalence for the combined and non-combined models under endoreversible assumption is invalid within the frame of low-dissipation assumption. Then, the equivalence between various finite-time thermodynamic models needs to be reevaluated regarding multi-terminal systems. Moreover, the correlation between the combined and non-combined models is further revealed by the derivation of the equivalentJGA thanks financial support for a postdoctoral contract from University of Salamanca under Program I

    Correlation between Dark Matter and Dark Radiation in String Compactifications

    Full text link
    Reheating in string compactifications is generically driven by the decay of the lightest modulus which produces Standard Model particles, dark matter and light hidden sector degrees of freedom that behave as dark radiation. This common origin allows us to find an interesting correlation between dark matter and dark radiation. By combining present upper bounds on the effective number of neutrino species N_eff with lower bounds on the reheating temperature as a function of the dark matter mass m_DM from Fermi data, we obtain strong constraints on the (N_eff,m_DM)-plane. Most of the allowed region in this plane corresponds to non-thermal scenarios with Higgsino-like dark matter. Thermal dark matter can be allowed only if N_eff tends to its Standard Model value. We show that the above situation is realised in models with perturbative moduli stabilisation where the production of dark radiation is unavoidable since bulk closed string axions remain light and do not get eaten up by anomalous U(1)s.Comment: 9 pages, 3 figure

    Information Rates of ASK-Based Molecular Communication in Fluid Media

    Get PDF
    This paper studies the capacity of molecular communications in fluid media, where the information is encoded in the number of transmitted molecules in a time-slot (amplitude shift keying). The propagation of molecules is governed by random Brownian motion and the communication is in general subject to inter-symbol interference (ISI). We first consider the case where ISI is negligible and analyze the capacity and the capacity per unit cost of the resulting discrete memoryless molecular channel and the effect of possible practical constraints, such as limitations on peak and/or average number of transmitted molecules per transmission. In the case with a constrained peak molecular emission, we show that as the time-slot duration increases, the input distribution achieving the capacity per channel use transitions from binary inputs to a discrete uniform distribution. In this paper, we also analyze the impact of ISI. Crucially, we account for the correlation that ISI induces between channel output symbols. We derive an upper bound and two lower bounds on the capacity in this setting. Using the input distribution obtained by an extended Blahut-Arimoto algorithm, we maximize the lower bounds. Our results show that, over a wide range of parameter values, the bounds are close.Comment: 31 pages, 8 figures, Accepted for publication on IEEE Transactions on Molecular, Biological, and Multi-Scale Communication
    corecore