1,936 research outputs found

    The behavior of quantization spectra as a function of signal-to-noise ratio

    Get PDF
    An expression for the spectrum of quantization error in a discrete-time system whose input is a sinusoid plus white Gaussian noise is derived. This quantization spectrum consists of two components: a white-noise floor and spurious harmonics. The dithering effect of the input Gaussian noise in both components of the spectrum is considered. Quantitative results in a discrete Fourier transform (DFT) example show the behavior of spurious harmonics as a function of the signal-to-noise ratio (SNR). These results have strong implications for digital reception and signal analysis systems. At low SNRs, spurious harmonics decay exponentially on a log-log scale, and the resulting spectrum is white. As the SNR increases, the spurious harmonics figure prominently in the output spectrum. A useful expression is given that roughly bounds the magnitude of a spurious harmonic as a function of the SNR

    A space communication study Final report, 15 Sep. 1967 - 15 Sep. 1968

    Get PDF
    Transmitting and receiving analog and digital signals through noisy media - space communications stud

    Relating Field Theories via Stochastic Quantization

    Full text link
    This note aims to subsume several apparently unrelated models under a common framework. Several examples of well-known quantum field theories are listed which are connected via stochastic quantization. We highlight the fact that the quantization method used to obtain the quantum crystal is a discrete analog of stochastic quantization. This model is of interest for string theory, since the (classical) melting crystal corner is related to the topological A-model. We outline several ideas for interpreting the quantum crystal on the string theory side of the correspondence, exploring interpretations in the Wheeler-De Witt framework and in terms of a non-Lorentz invariant limit of topological M-theory.Comment: References adde

    Techniques and errors in measuring cross- correlation and cross-spectral density functions

    Get PDF
    Techniques and errors in measuring cross spectral density and cross correlation functions of stationary dynamic pressure dat
    corecore