787 research outputs found

    Correlation distribution analysis of a two-round key-alternating block cipher

    Get PDF
    In this paper we study two-round key-alternating block ciphers with round function f(x)=x(2t+1)2s,f(x)=x^{(2^t+1)2^s}, where t,st,s are positive integers. An algorithm to compute the distribution weight with respect to input and output masks is described. In the case t=1t=1 the correlation distributions in dependence on input and output masks are completely determined for arbitrary pairs of masks. We investigate with more details the case f(x)=x3f(x)=x^3 and fully derive and classify the distributions, proving that there are only 5 possible values for the correlation for any pair of masks

    On Some Symmetric Lightweight Cryptographic Designs

    Get PDF
    This dissertation presents cryptanalysis of several symmetric lightweight primitives, both stream ciphers and block ciphers. Further, some aspects of authentication in combination with a keystream generator is investigated, and a new member of the Grain family of stream ciphers, Grain-128a, with built-in support for authentication is presented. The first contribution is an investigation of how authentication can be provided at a low additional cost, assuming a synchronous stream cipher is already implemented and used for encryption. These findings are then used when presenting the latest addition to the Grain family of stream ciphers, Grain-128a. It uses a 128-bit key and a 96-bit initialization vector to generate keystream, and to possibly also authenticate the plaintext. Next, the stream cipher BEAN, superficially similar to Grain, but notably using a weak output function and two feedback with carry shift registers (FCSRs) rather than linear and (non-FCSR) nonlinear feedback shift registers, is cryptanalyzed. An efficient distinguisher and a state-recovery attack is given. It is shown how knowledge of the state can be used to recover the key in a straightforward way. The remainder of this dissertation then focuses on block ciphers. First, a related-key attack on KTANTAN is presented. The attack notably uses only a few related keys, runs in less than half a minute on a current computer, and directly contradicts the designers' claims. It is discussed why this is, and what can be learned from this. Next, PRINTcipher is subjected to linear cryptanalysis. Several weak key classes are identified and it is shown how several observations of the same statistical property can be made for each plaintext--ciphertext pair. Finally, the invariant subspace property, first observed for certain key classes in PRINTcipher, is investigated. In particular, its connection to large linear biases is studied through an eigenvector which arises inside the cipher and leads to trail clustering in the linear hull which, under reasonable assumptions, causes a significant number of large linear biases. Simulations on several versions of PRINTcipher are compared to the theoretical findings

    Linear Cryptanalysis: Key Schedules and Tweakable Block Ciphers

    Get PDF
    This paper serves as a systematization of knowledge of linear cryptanalysis and provides novel insights in the areas of key schedule design and tweakable block ciphers. We examine in a step by step manner the linear hull theorem in a general and consistent setting. Based on this, we study the influence of the choice of the key scheduling on linear cryptanalysis, a – notoriously difficult – but important subject. Moreover, we investigate how tweakable block ciphers can be analyzed with respect to linear cryptanalysis, a topic that surprisingly has not been scrutinized until now

    Exercice de style

    Get PDF
    We present the construction and implementation of an 8-bit S-box with a differential and linear branch number of 3. We show an application by designing FLY, a simple block cipher based on bitsliced evaluations of the S-box and bit rotations that targets the same platforms as PRIDE, and which can be seen as a variant of PRESENT with 8-bit S-boxes. It achieves the same performance as PRIDE on 8-bit microcontrollers (in terms of number of instructions per round) while having 1.5 times more equivalent active S-boxes. The S-box also has an efficient implementation with SIMD instructions, a low implementation cost in hardware and it can be masked efficiently thanks to its sparing use of non-linear gates.Cette note présente la construction et l'implémentation d'une boîte S sur 8 bits qui a un branchement linéaire et différentiel de 3.Nous montrons une application en construisant un chiffre par bloc sur 64 bits dont la structure est très simple et est basée sur l'évaluationen tranches (bitsliced) de la boîte S et des rotations sur mots de 8 bits et qui peut être vu comme une variante de PRESENT avec une boîte S de 8 bits. La fonction de tour de ce chiffre peut s'implémenter avec le même nombred'instructions que celle de PRIDE sur micro-controleurs 8-bits, tout en ayant 1,5 fois plus de boîtes S actives (relativement).Cette boîte S peut aussi s'implémenter efficacement avec des instructions SIMD, a un coût faible en matériel etpeut se masquer efficacement grâce au peu de portes non-linéaires nécessaires
    • …
    corecore