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Abstract

In recent years, the need for lightweight encryption systems has been increasing as many

applications use RFID and sensor networks which have a very low computational power

and thus incapable of performing standard cryptographic operations. In response to this

problem, the cryptographic community designed a number of lightweight cryptographic

primitives that varies from stream ciphers, block ciphers and recently to hash functions.

Out of these many lightweight primitives, the block cipher PRESENT gets a lot of

attention from the cryptographic community and it has been recently adopted by ISO

as one of the international standards in lightweight cryptography.

This thesis aims at analyzing and evaluating the security of some the recently proposed

lightweight symmetric ciphers with a focus on PRESENT-like ciphers, namely, the block

cipher PRESENT and the block cipher PRINTcipher.

We provide an approach to estimate the probability of differential and linear approximations

with low-weight differential and linear characteristics on PRESENT-like ciphers as well as

ciphers allowing low hamming weight differential and linear characteristics. We study the effect

of key scheduling in the distribution of linear approximations on a variant of PRESENT with

identical round keys. We propose a new attack named the Invariant Subspace Attack that

was specifically mounted against the lightweight block cipher PRINTcipher. Furthermore,

we mount several attacks on a recently proposed stream cipher called A2U2.
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Abstrakt (in Danish)

I de seneste år er efterspørgslen efter systemer til letvægtskryptering steget, da mange anven-

delser involverer RFID og sensornetværk, som af natur har meget lav ydeevne, og derfor er

ude af stand til at udføre sædvanlige kryptografiske operationer. For at imødekomme dette

problem, har det kryptografiske fællesskab udviklet adskillige byggeblokke til brug i letvægt-

skryptering, som indebærer strømcifre, blokcifre og, som det seneste, hashfunktioner. Ud af

disse letvægtsalgoritmer, f̊ar især blokcifret PRESENT megen opmærksomhed fra det kryp-

tografiske fællesskab, og er for nylig blevet vedtaget af ISO som en international standard i

letvægtskryptografi.

Denne afhandling har til form̊al at analysere og evaluere sikkerheden af nogle af de senest

foresl̊aede symmetriske metoder til letvægtskryptering, med fokus p̊a cifre som designmæssigt

ligner PRESENT, navnlig PRESENT selv, samt blokcifret PRINTcipher.

Vi giver en metode til at estimere sandsynligheden af differential- og lineære approksimationer,

for karakteristikker af lav vægt, p̊a kryptosystemer som designmæssigt ligner PRESENT,

s̊avel som systemer der tillader differential- og lineære karakteristikker af lav Hamming vægt.

Vi undersøger virkningen af nøgleskema-planlægningen p̊a fordelingen af lineære approksima-

tioner for en variant af PRESENT med identiske rundenøgler. Vi foresl̊ar et nyt angreb med

navnet Invariant underrum-angreb, som specifikt blev anvendt p̊a letvægtscifret PRINTcipher.

Desuden giver vi adskillige angreb p̊a et nyt strømciffer kaldet A2U2.
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Preface

Lightweight cryptography deals with the design of cryptographic primitives that are suitable

to fit and run on small hardware devices such as RFID tags, sensor networks and contactless

smart cards. As the standard symmetric algorithms such as AES cannot fit in these low cost

small devices. The cryptographic community has recently responded by designing a number of

lightweight symmetric primitives suitable for constrained environments. This thesis evaluates

the security of some of the recently proposed symmetric-key ciphers. This thesis is organized

as follows.

Chapter 1 gives a brief introduction about cryptography and cryptanalysis. We highlight

the goals and services of cryptography and the goals of a cryptanalyst and define some of the

attack models used by cryptanalysts. We also describe some generic attacks on symmetric-key

ciphers.

Chapter 2 describes the common cryptanalytic techniques used in symmetric-key ciphers.

We describe the most versatile attacks on symmetric-key ciphers, namely, differential and

linear cryptanalysis and some improvements of these attacks. We also give a short description

about other attack variants such as the slide attack and algebraic attacks.

Chapter 3 provides a brief introduction about symmetric-key lightweight cryptography.

We describe the lightweight ciphers that are analyzed in this thesis, namely, the block cipher

PRESENT, the block cipher PRINTcipher and the stream cipher A2U2.

Chapter 4 addresses two subjects on differential and linear cryptanalysis in PRESENT-

like ciphers. The first subject concerns the estimation of the probabilities of low-weight dif-

ferential and linear approximations. The main result of this subject is in the extension a

previously known method to find better estimations for the correlation on linear approxima-

tions on the block cipher PRESENT and the core permutation of SPONGENT. This result

was published in ICISC 2012 [1]. The second subject concerns the effect of key scheduling

on the distribution of differential and linear approximation on PRESENT-like ciphers. The
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main result of this subject is in showing that variance of the distribution of some linear ap-

proximations in PRESENT with identical keys is significantly larger than that of PRESENT

with independent round keys. This result was part of a work about the distribution of linear

biases published in CRYPTO 2012 [2]. Note that [2] was a joint work with Martin Ågren,

Peter Beelen and Gregor Leander.

Chapter 5 is concerned about the differential cryptanalysis of PRINTcipher. The key-

dependent linear layer of PRINTcipher seems to complicate differential cryptanalysis. We

show that is the not the case by providing two differential attacks on reduced rounds of

PRINTcipher. One of these attacks recovers the key-dependent linear layer by computing

the rth root of a permutation in the symmetric group S48. This work was published at FSE

2011 [4]. Note that this was a joint work with Gregor Leander and Erik Zenner. The chapter

also shows how to design an authentication protocol whose security is based on a multi-valued

function, namely, the r-th roots of a permutation in the symmetric group Sn.

Chapter 6 provides a new attack on block ciphers called the Invariant Subspace Attack.

The attack was successfully applied to PRINTcipher and it managed to break the whole

PRINTcipher for a certain number of keys. We show that this attack can be seen as a

weak key variant of the statistical saturation attack previously applied on the block cipher

PRESENT. This work was published at CRYPTO 2011 [83]. Note that this was a joint work

with Hoda AlKhzaimi, Gregor Leander and Erik Zenner.

Chapter 7 provides several attacks on the stream cipher A2U2. The first attack uses only

two chosen plaintexts to break the cipher in a second. The second attack uses a guess-and-

determine approach to mount an attack with time complexity 249. The third attack is a chosen

IV attack that recovers 5-bit of the secret key used to initialize the LFSR counter. The fourth

attack is a known plaintext attack that targets the low number of initialization rounds to

recover the secret key with time complexity 238. Finally, an attack that exploits the noisy key

stream is proposed. This work was published at IMACC 2011 [3]. Note that this was joint

work with Julia Borghoff, Erik Zenner and Mathieu David.

Chapter 8 wraps up the results of this thesis and suggests some topics for future work.
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Chapter 1

Introduction

Cryptography is the art and science of designing security algorithms to provide certain

security services. Cryptanalysis is the art and science of analyzing and defeating the

security claims of these algorithms. The branch of science that embodies both cryp-

tography and cryptanalysis is called Cryptology. The main goal of cryptography is to

secure communications between two parties (sender and receiver) by transforming a

message (plaintext) to a scrambled message (ciphertext) using a secret key. The process

of transforming a plaintext into a ciphertext is called encryption and the process of

unscrambling the ciphertext to recover the original plaintext is called decryption.

Before the digital era, cryptography was used mainly by governments to secure their

communication channels and thus it was all about providing the service of confidentiality

using encryption-decryption methods. Nowadays, cryptography is widely used to solve

real-world information security problems that arise in many digital applications such as

ATM cards, computer passwords and online shopping. Thus in addition to confiden-

tiality, modern cryptography provides the following services to solve various aspects of

information security problems:

� Authentication allows the receiver to verify the sender’s identity.

� Data Integrity enables the receiver to verify that the sender’s message has not

been modified.

� Non-repudiation prevents the sender from denying any message he previously sent.

1.1 Cryptographic Primitives

The mathematical functions or algorithms that provides the above mentioned services

are called cryptographic primitives. These primitives include the following three schemes,

1



but are not limited to them: symmetric-key ciphers, public-key ciphers and cryptographic

hash functions.

1.1.1 Symmetric-Key Ciphers

Symmetric-key ciphers use one key for encryption and decryption between two parties.

Thus, they require that the two communicated parties agreed beforehand on a key. The

whole security of symmetric-key primitives depend on the secrecy of the key; revealing

the key means that encryption and decryption are possible by anyone. Symmetric-key

ciphers are used to provide the services of confidentiality and authentication and they

can be divided into two schemes. One scheme operates on a block of bits and these kind

of ciphers are called block ciphers and the other scheme generates a pseudo-random

stream of bits and mixes it with the plaintext bits and these kind of ciphers are called

stream ciphers. In the following, we give a brief overview about block ciphers and stream

ciphers.

Block Ciphers

A block cipher divides the input (plaintext) into block of bits of the same length and

then encrypts each block by a secret key. The output of the encryption operation must

be invertible using the same secret key used in the encryption operation. A block cipher

with a block size n takes a block of plaintext represented in bits (m0, · · · ,mn−1) and

outputs a binary vector (c0, · · · , cn−1) depending on the secret key. More formally, a

block cipher is defined as follows.

Definition 1. A block cipher with a block size of n bits and key size of k bits is an

invertible mapping F :M×K → C, where M∈ F n
2 is the message space, K ∈ F k

2 and

C ∈ F n
2 .

A block cipher is a family of n-bit permutations of size 2k where each secret key yields

one permutation out of the 2n! n-bit permutations. In order to pick a totally random

permutation or an ideal permutation from the set of all n-bit permutations, we would

need a key of size log2(2n!) ≈ (n − 1)2n bits. This is a huge number and would be

impractical to have such key size, so the design goal would be to approximate ideal

ciphers in practice by drawing 2k permutations uniformly at random from the set of all

n-bit permutations.
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Modern block ciphers are iterated ciphers. They iterate a round function a number of

times. The round function consists of a linear and nonlinear layers which transform the

given state (the plaintext in the first iteration) using a round subkey. There are two

construction types of block ciphers:

� Feistel Cipher operates on half of the state, i.e., the state at round i is divided into

two equal halves (Li, Ri). The round function F is applied to one half, sayRi, using

a round subkey ki and then its output is xored with the other half. Then the two

halves are exchanged with each other. Thus Li+1 = Ri and Ri+1 = Li⊕F (Ri, Ki).

� Substitution Permutation Network (SPN) operates on the whole state. They trans-

form the state using a substitution layer followed by a permutation layer. The sub-

stitution layer is a nonlinear layer consisting of small Sboxes which are vectorial

boolean functions that substitutes a small vector (usually ≤ 8 bits) of input bits

with another small vector of output bits (usually ≤ 8 bits). The permutation layer

applies a linear transformation to the output of substitution layer. The simplest

linear layer is the bit-wise permutation which permutes the state of the bits but

there are complex linear layers that performs matrix multiplication.

Examples for notable block ciphers are the DES, a Feistel cipher and was the previous

encryption standard and the AES which is an SPN design and the current encryption

standard.

Stream Ciphers

The only provably secure cipher, called one time pad, is a classical stream cipher whose

secret key is used only once and has the same length as the plaintext under encryption.

The cipher simply xors the plaintext bits with the secret key bits. Obviously this

encryption scheme has practical problems. Modern stream ciphers tries to emulate the

action of this provably secure scheme by using a short secret key and mixing it with a

random initial value in order to generate a very long pseudo-random key stream sequence

(this is called the initialization phase) which is then xored with the given plaintext to

produce the ciphertext.

Modern stream ciphers are usually constructed using Linear Feedback Shift Regis-

ters (LFSR) and Non-Linear Feedback Shift Registers (NFSR). Linear Feedback Shift
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Registers devices are used to produce long period sequences from short ones. An

LFSR of length n consists of n stages and is associated to a connection polynomial,

cnX
n + cn−1X

n−1 + · · ·+ c1X + c0, where ci ∈ F2 that is used to update its state. Each

stage stores one bit (or word) and has one input and one output. The flow of bits is

controlled by a clock. At each clock tick, the contents of stage 0 is the output and forms

part of the output sequence. Stage i is moved to stage i − 1 for each 1 ≤ i ≤ n − 1.

Stage n−1 is filled by the feedback bit(or word), sj, which is formed by xoring together

a fixed subset of the previous stages (0, 1, . . . , n− 1) depending on ci’s, the coefficients

of the connection polynomial,

sj =
n⊕
i=1

cisj−i.

An LFSR of length produces a maximal sequence of length 2n − 1 iff its connection

polynomial is primitive. LFSRs are vulnerable to the powerful O(n2) linear complex-

ity Berlekamp-Massey attack [88] which requires only 2n consecutive sequence bits (or

words) to deduce the ci’s. Therefore, the LFSR is used together with a nonlinear Boolean

function to avoid the Berlekamp-Massey attack. Another component that is also used in

modern stream ciphers is the NFSR which works similar to LFSR except that its feed-

back function is a nonlinear Boolean function of the state. Examples for NFSR-based

stream ciphers are the lightweight ciphers Grain [60] and Trivium [32].

1.1.2 Public-Key Ciphers

Also known as Asymmetric-key ciphers. They use one key for encryption called “public

key” and another key for decryption called “private key”. The public key is known by

everyone whereas the private key is kept secret by its user and it is never possible to

deduce the private key from the public key. A public-key cipher can be defined as a

function that maps a plaintext message to a ciphertext message and can be computed by

anyone having the public key but its inverse is infeasible to compute unless we have the

private key. This one way encryption function is often called a trapdoor function. The

hardness of inverting these functions relies on the fact that there are some mathematical

problems that there are no known algorithms to solve them in a reasonable amount of

time such as the Integer Factorization Problem and the Discrete Logarithm Problem.

The most prominent public-key ciphers are RSA and ElGamal. Public-key ciphers are

used to provide the services of confidentiality, authentication, non-repudiation and secret

key establishment.

4



1.1.3 Cryptographic Hash Functions

A cryptographic hash function maps a binary message of any arbitrary length to a small

binary message of a fixed length often called the hash value or the message digest. The

message digest serves as a small unique representation and a digital fingerprint of the

actual lengthy message. Since the input size of the hash function is larger than its output

size, many messages will have the same message digest but finding such messages should

be infeasible. A good cryptographic hash function must be easy to compute and must

possess the following properties:

� Collision resistance: It is infeasible to find two messages that have the same hash

value.

� Preimage resistance: Given a hash value, it is infeasible to generate its actual

message.

� Second preimage resistance: Given a specific message, it is infeasible to find an-

other different message that has the same hash value.

Cryptographic hash functions are used in many security applications to provide the

services of data integrity and non-repudiation when used with a public-key cipher. An-

other different primitive but usually constructed from either a keyed hash function or

a block cipher is called Message Authentication Code (MAC). It has different security

properties and it is used to provide authentication.

The focus of this thesis is in the cryptanalysis of symmetric-key ciphers, so the next sec-

tion specifically discusses cryptanalysis of symmetric-key ciphers and more specifically

block ciphers.

1.2 Cryptanalysis

In this section, we describe the cryptanalyst’s (aka attacker or adversary) goals and the

attack models based on the data available to him. We also discuss the measurements

of the complexity of a cryptanalytic attack. We close the section by describing some

generic attacks on block ciphers.
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1.2.1 Attacker’s Goals

The attacker’s goal is to find the secret key but he can also tries to achieve other useful

information. In [75, 79], Knudsen classified various types of attacks on block ciphers

based on the attacker’s gained information:

� Total break : An attacker finds the secret key of the cipher.

� Global deduction: An attacker finds equivalent algorithms for performing encryp-

tion and decryption without knowing the secret key.

� Local deduction: An attacker finds the plaintext of a new given ciphertext.

� Distinguishing algorithm: An attacker is able to distinguish the block cipher from

a randomly chosen permutation.

1.2.2 Attack Models and Complexity

Cryptanalytic attacks can be divided based on the amount of data available. First, the

attacker is assumed to know the cryptographic algorithm under attack. This is known

in the literature as Kerckhoff’s principle. The following represents some of the attack

models used in symmetric key cryptanalysis based on the data available to the attacker:

� Ciphertext only : the attacker only knows the ciphertexts

� Known plaintext : the attacker knows some plaintexts with their corresponding

ciphertexts

� Chosen plaintext (ciphertext): the attacker can choose his own set of plaintexts

(ciphertexts) and obtain their corresponding ciphertexts (plaintexts), i.e. the at-

tacker has access to the encryption (decryption) device.

� Adaptive chosen plaintext (ciphertext): similar to the chosen plaintext (ciphertext)

attack except that here the attacker base his next choice of plaintext (ciphertext)

on his observations from the previous encryptions.

� Related key attacks : here the attacker knows some plaintexts-ciphertext obtained

under the encryption of at least two unknown keys (k1, k2) but they have a known

or chosen relationship (i.e. k2 = f(k1) where f is known or chosen).
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The complexity of an attack is determined by the dominant complexity among the

following three different complexity measures together with the success probability of

the attack:

� Time complexity : the processing time taken to mount the attack.

� Data complexity : the expected amount of data (plaintext-ciphertext) for the attack

to succeed.

� Memory complexity : the memory size required to process the attack.

1.2.3 Generic Attacks

Generic attacks are the kind of attacks that are possible regardless of the internal struc-

ture of the target cipher. The most obvious generic attack is the brute force attack

or exhaustive key search which is simply trying all the possible keys. Another generic

attack is called table lookup and this attack builds up a huge table that is used later to

find the key instantly. Another generic attack that combines both the exhaustive key

search and the table look-up attack is called the time-memory tradeoff. We conclude

our discussion on generic attacks by describing meet-in-the-middle attacks especially

the attack on 2DES. While the meet-in-the-middle attack on 2DES is a generic attack,

advanced meet-in-the-middle attacks do exploit the internal structure of the cipher and

more specifically they exploit some weaknesses in its key schedule. In the following we

discuss these four generic attacks.

Brute Force:

Suppose we have an n-bit block cipher Ek with a k-bit key size. Then a brute force can be

performed either by using a ciphertext only where the attacker searches throughout the

key space until a meaningful plaintext is found or by using a known plaintext/ciphertext

pair where the attacker looks for the key that yields the plaintext/ciphertext pair. We

might possibly get more than one key candidate for the target secret key when known

the key size k is larger than the block size n. This is due to the fact that the probability

of encrypting an n-bit plaintext (m) to an n-bit ciphertext (c) under one key is 2−n.

Thus the expected number of keys that encrypts m to c is 2k−n. Thus in order to get a

unique key we need to test d k
n
e plaintext/ciphertext pairs.
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If we only need one plaintext/ciphertext, then the worst case time complexity will be

2k encryptions of the cipher under consideration. If the secret key lies in the first or last

half of the key space, then the time complexity will be 2k−1 encryptions. Now the target

secret key is chosen at random and with probability 1
2k and each ki takes i encryptions.

Therefore, the average time complexity can be computed as follows

2k∑
i=1

i · Pr(secret key = ki) =
2k∑
i=1

i

2k ≈ 2k−1

Thus on average we need 2k−1 encryptions. Parallel computing is usually used to speedup

the exhaustive search. For example, if the amount of computing power available to the

attacker is P , then the time taken for a brute force attack will be in the order of ≈ 2k

P
.

Therefore, it is recommended that when designing a cipher, that the secret key length k

is chosen such that 2k

P
is larger than the life time of the data protected by the cipher [66].

Table Look-Up

Rather than carrying out the exhaustive search attack everytime. The table look-up

attack builds a huge table once using exhaustive search in order to be used later to find

the key instantly. The table look-up attack consists of two phases: one phase called

the offline phase where exhaustive key search is used to build a table that maintains

2k entries where each entry consists of a specified plaintext m that is likely to be sent

(plaintext is a common word) and an encryption key together with the corresponding

ciphertext. The other phase called the online phase where we attack the cipher under

consideration by getting a ciphertext c obtained from encrypting the likely specified

plaintext at the offline phase and then finding the target key by looking up for c in the

table built in the offline phase.

Time-Memory Tradeoff:

Clearly the exhaustive key search attack consumes time and negligible memory whereas

the table lookup consumes memory and negligible time. This triggered and led up to the

time-memory tradeoff attack developed by Hellman in [61]. The time-memory tradeoff

attack is a probabilistic method and its success probability depends on time and memory

that are allocated by the attacker. Likewise the table look-up attack, the time-memory
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tradeoff attack consists of two phases: an offline phase where the attacker builds a table

and stores it in memory in order to be used in the online phase to reduce the amount

of time to recover a secret key.

In order to perform a time-memory tradeoff attack, we first choose a likely plaintext P

and obtain its ciphertext C = EK(P ), where E is an n-bit block cipher with key size

k-bit and for simplicity let us assume first that n = k. Let K0 be a possible key. Then

we create a chain of t encryptions where our starting point denoted as SP equals K0

and our ending point denoted as EP equals Kt−1. Now the chain is created as follows:

SP = K0, K1 = ESP (P ), K2 = EK1(P ), · · · , Kt−1 = EKt−2(P ) = EP

Now to cover more keys we createm chains where each key starts with a different starting

point. Moreover we also assume that there is no overlap among the m chains. The m

chains forms the following m × t matrix, where each row is created after performing

(t− 1) encryptions.

SP1 = K1,1 K1,2 = ESP1(P ) K1,3 = EK1,2(P ) · · · K1,t = EK1,t−1(P ) = EP1

SP2 = K2,1 K2,2 = ESP2(P ) K2,3 = EK2,2(P ) · · · K2,t = EK2,t−1(P ) = EP2
...

...
...

...
...

SPm = Km,1 Km,2 = ESPm(P ) Km,3 = EKm,2(P ) · · · Km,t = EKm,t−1(P ) = EPm

As we are assuming that none of the chains overlap, then our matrix covers mt distinct

key values. To reduce memory requirements we only store the starting and ending points

of each chain, i.e. (SPi, EPi) for all 1 ≤ i ≤ m. Thus we reduce our memory storage

from mt key values to 2m values at the cost of spending (t− 1) encryptions to recover

each chain when we are looking for the secret key and thus we have a time-memory

trade-off. Now let us explain the process of recovering the secret key. The attacker

knows the ciphertext C of the chosen plaintext P used in the creation of the chains.

The attacker performs the following encryption operations:

EC(P ) = K̃1, EK̃1
(P ) = K̃2, · · · , EK̃t−1

(P ) = K̃t−2

After each encryption step the attacker checks whether K̃i equals one of the m end

points (EP1, · · · , EPm). Now assuming our chains cover all the key space, then we
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must have

K̃i = EPj for some i ∈ {1, 2, · · · , t} and j ∈ {1, 2, · · · ,m}

Now the attacker rebuilds the jth chain starting with SPj and consequently one of the

keys on this chain, say Ks must be equal to C. Thus C = Ks = EKs−1(P ) and therefore

the secret key will be Ks−1 = EKs−2(P ). Note that we have to avoid using C as a

starting point when building the chains in the offline phase. In order for the chains to

cover the whole key space we need to have mt = 2k and this is the time complexity of the

offline phase. The online phase requires only (t− 1) encryptions. Since the assumption

of having no overlaps among the chains is unrealistic and cannot be avoided, we will

usually have a probabilistic attack anyway.

However, the overlaps in the above case where n = k are fewer compared to the case

n > k which was in the original Hellman’s time-memory attack [61] proposed on the

DES cipher which has a block size, n = 64 bits and a key size, k = 56 bits. In order

to create the chains represented in the above matrix, Hellman used what he called a

reduction function, f(K) = R(EK(P )), which simply truncates in some specific way the

64-bit of EK(P ) to 56-bit so that it can be used as a key in order to produce the next

value in the chain. The attack in this case is similar to the previous attack except here

we have false positives or false alarms. For instance suppose that we found

f(C) = Ks = f(EKs−1(P )),

then unlike the n = k case, the key Ks−1 might not be the right key as the equality

here holds for the truncated values and not for the actual values of C and EKs−1(P ).
False alarms can be discarded by using them to decrypt C as the right key will always

yield the plaintext P . The false alarms are a result of the overlap that is caused by the

reduction function. Overlaps can happen in one chain or two chains can merge into one

chain.

Therefore, the number of the distinct key values might be less than mt. The values of m

and t decide the time-memory trade-off and the secret key is recovered with probability
mt
2k under the assumption that all the mt key values are distinct. In other words, if

the secret key exists in the chains, then it will be found by the time-memory tradeoff

otherwise it will not be found. This makes the attacker aims at finding the suitable m

and t values that increase the success probability of the time-memory trade-off attack.
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Hellman showed that when choosing m = t = 2 k
3 . The success probability will be

2− k
3 and to overcome this small probability Hellman proposed the use of around l = 2 k

3

different tables where each table has its own reduction function to avoid overlaps among

the tables. If the first table doesn’t yield the key, then the second table is tried, and so

on until we find the key. Therefore, the total memory cost is 2ml = 2 2k
3 +1 ≈ 2 2k

3 and

the total time complexity is at most (t−1)l ≈ 2 2k
3 since in each table we perform (t−1)

encryptions and reductions. However, time-memory tradeoff attacks can be thwarted

by adding some random value to any plaintext before encrypting it.

One notable improvement to Hellman’s time-memory tradeoff is the work of Oech-

slin [92] which uses what he calls “rainbow table”. This table uses (t − 1) successive

reduction functions and thus different reduction functions within each point in a chain.

For instance, all chains start with reduction function 1 and end with reduction function

(t− 1). This reduces possible overlaps among the chains as any two chains that overlap

will not merge unless they overlap at the same position or column in the table since

different positions or columns in the table use different reduction functions. For more

details about “rainbow tables”, we refer the reader to [92].

Meet-In-The-Middle Attacks:

Meet-in-the-middle attacks were first developed by Diffie and Hellman to attack a version

of DES called Double DES or 2DES which simply tries to solve the short length of the

56-bit DES key by increasing it to 112-bit through performing DES twice with two

different keys, i.e. 2DES(K1||K2, P ) = DES(K2, DES(K1, P )) = C.

Given (P,C) the attack exploits the fact that DES−1(K2, C) = DES(K1, P ). The meet

in the middle attack on 2DES can described as follows:

1. To get a unique key we need to collect d112
64 e = 2 (See the brute force attack)

plaintext blocks and their corresponding ciphertexts (P1, C1) and (P2, C2).

2. For all the 256 possible key values k1 of K1, compute L = DES(k1, P ) and save L

and k1 in a hash table indexed by L.

3. After constructing the hash table, compute R = DES−1(k2, C) for all the 256

possible values k2 of K2 and check if there is as index in the hash table that equals

to R. If there is no index that equals R in the hash table then k2 6= K2 and we
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continue another k2. If there is an index L corresponding to the entry (L, k1) in

the hash table that equals R. Then k1||k2 is a possible candidate for K1||K2

4. If k1||k2 encrypts P1 to C1 and P2 to C2, then k1||k2 is probably the right key

value.

The time complexity taken by the above algorithm is 256 encryption operations taken

at step 1 and at most 256 decryption operations taken at step 3. Thus the total time

complexity is 257 DES encryption or decryption operations. The amount of memory

taken by the hash table is 7 × 8 × 256 bytes and this is approximately equivalent to

222 TB which is a huge amount of memory (a time-memory tradeoff is possible here,

for more information we refer the reader to [88]). However, this attack suggests that

the security of 2DES is reduced from 112-bit key length to a 57-bit key length. This

attack in 2DES led up to the suggestion of two triple DES or 3DES ciphers which use

3 iterations of DES. One is called 3DES3 and it uses three different keys and is defined

as follows

3DES3(K1||K2||K3, P ) = DES(K3, DES
−1(K2, DES(K1, P )))

The other one is called 3DES2 and it uses 2 different keys and is defined as follows

3DES2(K1||K2, P ) = DES(K2, DES
−1(K1, DES(K2, P )))

Here we note that DES−1 is used above so that 3DES and 3DES2 become easily com-

patible with DES since

DES(K,P ) = 3DES3(K||K||K,P ) = 3DES2(K||K,P )

3DES3 is obviously susceptible to a meet in the middle attack similar to the one on

2DES and its effective key length is clearly consists of the lengths of only two keys out

of the three keys. Thus its effective key length is reduced from 168-bit (bits length of

the three keys) to 112-bit (bits length of two keys). 3DES2 is suspectable to a meet-in-

the-middle attack that takes time 2120−log2 t and memory complexity in the order of t if

t known plaintexts are available [88].
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Chapter 2

Cryptanalysis Techniques

In his seminal paper [106], Claude Shannon mentioned two statistical properties that any

cryptosystem should acquire in order to be secure against statistical analysis, namely

confusion and diffusion. The confusion property could be described as having a compli-

cated relation between the secret key and all the ciphertext bits in a way such that each

ciphertext bit dependent on the entire secret key. A good confusion is accomplished

if flipping one bit of a secret key, results in flipping several bits in the ciphertext. In

cryptographic primitives this is often accomplished by the use of nonlinear vectorial

Boolean functions aka substitution boxes (Sboxes). The diffusion property could be de-

scribed as having the plaintext being distributed over the ciphertext in a way such that

each plaintext bit affects as many bits as possible in the ciphertext. A good diffusion

is accomplished if flipping one bit of a plaintext, results in flipping several bits in the

ciphertext. In cryptographic primitives this is often accomplished by the use of linear

mappings such as matrix multiplication. Most of the attacks on cryptographic primi-

tives exploit weaknesses of these two important properties in the cryptosystem under

consideration.

In this chapter, we discuss the two most powerful attacks agianst symmetric-key ciphers,

namely, differential and linear cryptanalysis. We also discuss some of their extensions

and close the chapter by giving a brief overview about the slide and algebraic attacks.

2.1 Differential Cryptanalysis

Differential Cryptanalysis is a chosen plaintext attack invented by Biham and

Shamir [14]. The idea is to look into differences of plaintext pairs and their corre-

sponding ciphertext pairs rather than looking into the values of a plaintext and its

corresponding ciphertext. It exploits the existence of input differences whose corre-

sponding output differences occur with high probability to deduce some information
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about the secret key.

On the Type of Difference: The difference operation is chosen in order to remove

the effect of the key used in the system under attack. Usually it is the xor difference

which is the case in most cryptographic primitives but there are some primitives where

the difference is addition or multiplication modulo n such as in IDEA and SAFER.

For the sake of simplicity, suppose we have the following ciphertexts, c1 = m1 ⊕ k and

c1 = m2 ⊕ k. Then the suitable difference operation that cancels the key effect is the

following: c1 ⊕ c2 = m1 ⊕m2 which allows the attacker to gain some information (their

difference) about the plaintexts. Another example, if c1 = m1�k and c2 = m2�k where

� is the addition modulo an integer, usually in most cryptographic primitives this is an

8-bit, 16-bit or 32-bit integer. Then the suitable difference that cancels the key effect is

the following: c1 � c−1
2 = (m1 � k) � (m2 � k)−1 = m1 � k � k−1 �m−1

2 = m1 �m−1
2 ,

where the inverse operation is taken under the group defined by the set of the possible

plaintexts and under the � operation. In fact nowadays the ⊕ is the most used operation

in mixing the key with data as the the other operations such as addition makes the cipher

difficult to analyze especially against differential cryptanalysis and thus designers tend

to use ⊕ operations to ease the analysis and also because its cost is cheaper in hardware

compared to the �.

Differential Characteristic and Differential: As most modern symmetric ciphers

are iterated, i.e. they iterate for some rounds, where all rounds basically perform the

same operations with the exception of using a specific round key or a round constant,

linear and differential properties of such ciphers are analyzed for one round and then

extended to multiple rounds. Differential attacks are based on the so-called differen-

tial characteristic which is a sequence of intermediate difference relations for all rounds

where the probability of each element in this sequence determines the probability of the

corresponding differential characteristic. The collection of all the r-round differential

characteristics (aka trails or paths) with input α = α0 and output β = αr is called

the differential of the difference approximation (α0, αr). Each r-round differential char-

acteristic could be seen as a sequence (α0, α1i, · · · , α(r−1)i, αr) where i defines the ith

differential trail between α0 to αr.
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On the Probability of a Differential Characteristic: As pointed in Chapter 1,

iterated cryptographic primitives have both linear and nonlinear components. Clearly

the linear operation preserves the difference and thus the output difference occurs with

probability 1. However, the nonlinear components (usually the Sboxes or � modulo

an integer) do not preserve differences but some input differences can have some out-

put differences with some probability. For instance if we have a nonlinear component

S : Fn2 → Fm2 , where n and m are small integers then we can build its difference approx-

imation table. This table simply contains the probabilities of all the possible input and

output differences. Suppose we have input difference ∆X and output difference ∆Y ,

then

S∆X,∆Y = |{X ∈ Domain(S) : S(X)⊗ (S(X ⊗ (∆X)−1))−1 = ∆Y }|

where ⊗ is the difference operation. The probability of having an input difference

∆X and getting an output difference ∆Y is
S∆X,∆Y

2n . This together with the concept

of a Markov cipher which we define below enable us to compute the probability of a

differential characteristic.

One class of iterated ciphers defined in [81], is called Markov ciphers. For such ciphers,

under well established independence assumptions, the probability of a differential char-

acteristic can be calculated. In these ciphers, the sequence (α0, α1i, · · · , α(r−1)i, αr) is

called a Markov chain if the intermediate transitions αi → αi+1 are independent of each

other, in other words, given the present state, the future and past states are independent.

In other words,

Pr((vi+1 = αi+1)|vi = αi, · · · , v0 = α0) = Pr((vi+1 = αi+1)|vi = αi) for 0 ≤ i ≤ r

Moreover, if Pr(vi+1 = β|vi = α) is independent of i for all α and β then a Markov chain

is called homogeneous or stationary, in other words Pr(vi+1 = β|vi = α) = Pr(vi =
β|vi−1 = α).

Definition 2. An iterated cipher with round function Y = f(X,Ki) is a Markov cipher

if there is a difference operation where Pr(∆Y = β|∆X = α,X = m) is independent of

m for all α and β when the round key Ki is chosen uniformly at random.

The probability of a differential relation can be computed using a difference transition

matrix. In the following, we briefly describe how to construct and use these matrices.
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Difference Transition Matrix [81]: Assume that we have an r-round Markov cipher

with independent and uniformly random round keys. To estimate the probability of

an r-round differential (α0, αr), we first consider the probability of each differential

characteristic between α0 and αr, so the probability of the i-th differential characteristic

(α0, α1i, · · · , α(r−1)i, αr) is

pi =
r∏
i=1

Pr(FK(X)⊕ FK(X ′) = αi|X ⊕X ′ = αi−1)

Consequently the probability of an r-round differential (α0, αr) is the sum of all the

probabilities of all the possible differential characteristics between (α0, αr), that is∑Nd
i=1 pi, where Nd is the number of all the possible differential characteristics between

(α0, αr). Let D denote the transition difference-probability matrix of an n-bit Markov

cipher. D has size (2n − 1) × (2n − 1), the (i, j) entry in D is the probability of

obtaining an output difference say βj when we have an input difference say βi, i.e.

Pr(∆(FK(X)) = βj|∆(X) = βi) where FK is the round function of the Markov cipher.

Now, for any r, the (i, j) entry of the matrix Dr, p
(r)
ij is equivalent to the probability of

the r-round differential (βi, βj).

Key Recovery and Data Complexity of a Differential Attack: Suppose we have

an r-round iterated n-bit block cipher with k-bit secret key. To mount a differential

attack we first look at a good (r − 1)-round characteristic, i.e. (α0, · · · , αr−1). In other

words a characteristic occurring with a probability p significantly larger than 2−n.1

Suppose we want to recover some key bits of the last round key kr. We guess part

of kr that would enable us to partially decrypt a number of ciphertext pairs c1
r and c2

r

obtained by encrypting a number of plaintext pairs m1 and m2 with difference ∆m = α0.

The guess and the partial decryption process should have a time complexity below the

brute force complexity 2k. Then for each key guess and each partial decryption of a

given ciphertext pair, we check if the difference of the partially decrypted pair matches

the characteristic value or part of it at round r − 1, αr−1. Then the key guess that

yields the highest number of matches would probably be the right key. As noted in [81],

when mounting a key recovery differential attack, we assume that all the round subkeys

1It was shown in [59] that the maximum differential probability in an n-bit random permutation
is expected to be ≤ n

2n−1 with a higher probability that is almost equal to 1. Therefore the maximum
differential approximation for a 64-bit and 128-bit block ciphers is expected to be less than 2−57 and
2−120 respectively but as pointed in [11] they are hard to find.
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are independent and uniformly random to compute the differential probability but we

are also assuming that all the secret keys behave similarly, i.e. for an (r − 1)-round

differential, (α0, · · · , αr−1):

Pr(∆cr−1 = αr−1|∆m = α0) ≈ Pr(∆cr−1 = αr−1|∆m = α0, k1 = s1, · · · , kr−1 = sr−1)

for almost all subkey values (s1, · · · , sr−1). This is known in the literature as the hy-

pothesis of stochastic equivalence [81] (See Chapter 4). A successful differential attack

requires data complexity equivalent to c
p
, where c is a small integer since this will give

us on average c right pairs which are pairs that follow the differential characteristic.

However, for the attack to succeed, the right value of kr have to be suggested at a rate

that distinguishes it from the other candidate values. Usually this is determined by the

signal-to-noise concept which is often denoted as S/N and is defined as the number

of times the right key guess is counted over the number of times a wrong key guess is

counted. For more details we refer the reader to [14,79].

The work of Selçuk in [104] reveals that the targeted key length is one of the factors

that affects the success probability of a differential attack besides the S/N rate and

the available amount of plaintext. Approximating the binomial distribution of the key

counters to a normal distribution, Selçuk provided a formula depending on the key length

and the amount of plaintext pairs to estimate the success probability of a differential

attack.

However, the recent work of Blondeau and Gérard [18] provides a better statistical

framework to compute the success probability and data complexity in differential crypt-

analysis as their statistical analysis deals with the binomial distribution of the counters

which is believed to be better than approximating the binomial distribution to a normal

distribution [18].

Several extensions to the normal differential attack have been developed in the 90’s.

However, unlike the normal differential their applicability depends on the cryptographic

primitive under attack. Below we discuss some of them.

Truncated Differential Cryptanalysis: In their original differential attack [13],

Biham and Shamir considered the idea of using many differentials with different input

difference but the same output difference. Later Knudsen in [76] used the reverse of this

idea. So rather than looking into multi inputs and one output difference, he looked at
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one input but multi output differences or part of the output difference. This technique

is called truncated differential as in the multi output differences we only consider part of

the bits which are the ones having the same value and position. This will definitely give

us a higher probability than considering only one output difference. However unlike dif-

ferential cryptanalysis, truncated differentials are limited and it might not be applicable

on some cryptographic primitives designs but when applicable they are more effective

than the usual differential attacks as they would result in either attacking more rounds

or reducing the data complexity required to have a successful attack. More recently

in [19], Blondeau and Gérard combined the two above ideas, i.e. multi input differ-

entials and multi output differences, and proposed multiple differential cryptanalysis

along with a statistical framework to estimate its data complexity, time complexity and

success probability.

Higher Order Differential Cryptanalysis: This technique was introduced by Lai

in [80] and used by Knudsen in [76] to develop an attack against ciphers presumably

secure against ordinary differential attacks. Instead of considering a difference between

two values as in differential attacks, higher order differential attacks consider difference

between differences. For instance, let f : F2n → F2 be a Boolean function. Consider a

normal α1 difference f(x)⊕f(x⊕α1), this is called a 1st order difference (or derivative),

an α2 difference of ∆α2 = f(x)⊕ f(x⊕ α1) is:

∆α2(∆α1f(x)) = f(x)⊕ f(x⊕ α1)⊕ f(x⊕ α2)⊕ f(x⊕ α1 ⊕ α2)

More generally a dth-order differential is defined as ∆αd
(∆α1,··· ,αd−1f(x)). Since any

ciphertext bit can be expressed as a polynomial in the secret key bits and plaintext

bits, ciphers with low algebraic degree are weak against this technique as they could be

attacked using the fact that the value of the (d+1)-order derivative is zero if f(x) has

degree d. For instance, if we know that the algebraic degree of a cryptographic primitive

is 16, then the key guess that makes the value of the 17th order differential zero will be

the right key.

One application of higher order differentials is called cube attacks. They were introduced

by Dinur and Shamir in [47]. Cube attacks use higher order differentials in order to

obtain linear equations in the secret key bits of the target cipher even if the attacker

has no idea about the design of the target cipher, i.e. the multivariate polynomials

that represent each bit at the output. Like higher order differentials attacks, if there
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is a single bit represented by a polynomial whose Algebraic Normal Form (ANF) has

a low degree then cube attacks can be applied successfully. Thus, as block ciphers

have high algebraic degree even for a small number of rounds, cube attacks can only

be effective for stream ciphers as they use nonlinear feedback registers which provide a

slow diffusion and consequently some output bits might have low algebraic degree even

after a high number of rounds. The attack was successfully applied to reduced-rounds

of Trivium [32].

More recently, an improvement to cube attacks called dynamic cube attacks has been

proposed [48]. The attack tries to benefit from high algebraic degree polynomials P

that can be decomposed into three polynomials P1, P2 and P3 such that P = P1P2 + P3

where P1 is called the source polynomial, P2 is called the target polynomial and it is

very dense and has a high algebraic degree and P3 is called the remainder polynomial

and it has a low algebraic degree. The idea of the attack is to choose some inputs called

dynamic variables that nullify the polynomial P1 and therefore simplify the polynomial

P to P = P3. The choice of P1 and P2 requires a careful analysis of the cipher under

consideration. The attack was successfully applied to the full Grain-128 but only for

some keys belonging to a subset of 2−10 of all the possible 2128 keys.

Impossible Differential Cryptanalysis: Rather than exploiting a differential with

a high probability, impossible differential attacks exploit differentials with a very low or

zero probability. The use of a zero differential probability was firstly used by Knudsen

in his analysis of his block cipher DEAL [74]. Later the use of a zero or low differential

probabilities was exploited by Biham et al in their analysis of SKIPJACK [12] where

they named it impossible differential.

2.2 Linear Cryptanalysis

Linear Cryptanalysis is a known plaintext attack that exploits ciphers which are

close to linear functions. The attack was invented by Matsui to break the DES cipher

in [86]. The idea is to find a linear relation between some plaintext bits and ciphertext

bits (and also some secret key bits in the case of block ciphers) and then exploit the

bias or the correlation of this linear relation which should be unbiased (uncorrelated) in

an ideal cipher.
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Suppose we have an n-bit plaintext and ciphertext denoted by m and c respectively and

obtained under a secret key k of length l. Then linear cryptanalysis finds an α and

β ∈ Fn2 such that probability of linear approximation

〈α,m〉 ⊕ 〈β, c〉 = 〈γ, k〉, where k ∈ Fl2

deviates significantly from 1
2 .

We start by introducing the Walsh transform of a single and vectorial Boolean functions

respectively. We then define a linear approximation in terms of the Walsh transform

and this is useful especially when we discuss the multidimensional linear attacks.

The Walsh transform of a Boolean function f(x) where f : Fn2 → F2 at the point a ∈ Fn2
is defined to be the real valued function

f̂(a) =
∑
x∈Fn

2

(−1)f(x)⊕〈a,x〉.

Similarly the Walsh transform (or the Fourier coefficient) of a vectorial Boolean function

F : Fn2 → Fm2 at the point (a, b) ∈ Fn2 × Fm2 is defined by

F̂ (a, b) =
∑
x

(−1)〈b,F (x)〉⊕〈a,x〉

In linear cryptanalysis we approximate the function f(x) to 〈a, x〉. Therefore, we are

interested in computing Pr(f(x) = 〈a, x〉). Let N0 denote the number of x = u such

that f(u) = 〈a, u〉 and let N1 denote the number of x = u such that f(u) = 〈a, u〉 ⊕ 1.

Obviously, N0 +N1 = 2n and the Walsh transform can be written as follows

f̂(a) = N0 −N1

Let pa = Pr(f(x) = 〈a, x〉). So pa = N0
2n and we see that f̂(a) = 2N0−2n = 2n+1(pa− 1

2).
Consequently

pa = 1
2 + 1

2n+1 f̂(a)

Similarly for a vectorial function F (x), the probability that 〈b, F (x)〉 equals 〈a, x〉 can
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be calculated as follows

pa,b = 1
2 + 1

2n+1 F̂ (a, b)

The bias of approximating 〈b, F (x)〉 by 〈a, x〉 is defined as ε = pa,b − 1
2 = F̂ (a,b)

2n+1 and the

correlation of of approximating 〈b, F (x)〉 by 〈a, x〉 is defined as

C(a, b) = 2ε = F̂ (a, b)
2n (2.1)

Linear Characteristic and Linear Hull Linear attacks are based on the so-called

linear characteristic which is a sequence of intermediate linear relations for all rounds

where the correlation of each element in this sequence determines the correlation of

the corresponding linear characteristic. The collection of all the linear characteristics

with input mask α = α0 and output mask β = αr is often called the linear hull of the

linear approximation (α0, αr), also each r-round linear characteristic could be seen as a

sequence (α0, α1i, · · · , α(r−1)i, αr) where i defines the i-th linear trail between α0 to αr.

On the Correlation of a Linear Characteristic: As pointed in Chapter 1, it-

erated cryptographic primitives have both linear and nonlinear components. Clearly

the linear operation preserves a linear approximation with probability 1. However, the

nonlinear components (usually the Sboxes or � modulo an integer) need to be linearly

approximated with some probability. For instance if we have a nonlinear component

S : Fn2 → Fm2 where n and m are small integers then we can build its linear approxi-

mation table. This table simply contains the correlations of all the possible input and

output approximations (aka input and output masks).

Suppose we have input mask α and output mask β, then

Sα,β = |{X ∈ Domain(S) : 〈β, S(X)〉 = 〈X,α〉}|

The probability of an input mask α being equal to an output mask β is

Pr(〈β, S(x)〉 = 〈α, x〉) = Sα,β
2n

and their correlation is equivalent to 2 Pr(〈β, S(x)〉 = 〈α, x〉)− 1.

The Piling-Up Lemma [86] was used by Matsui to estimate the probability of a linear
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characteristic but the estimation of the correlation of a linear hull results from the theory

of correlation matrices [41,44] or the Walsh tansform of composite mappings [35].

Correlation Matrix [41, 44]: Assume that we have a composite function F : Fn2 →
Fn2 such that F = Fr ◦ · · · ◦ F2 ◦ F1. To estimate the correlation of an r-round linear

approximation (α0, αr) of F , we first consider the correlation of each linear characteristic

between α0 and αr. Using the Piling-Up Lemma and assuming that all the intermediate

linear approximations, i.e. 〈α(j−1)i, cj−1〉 ⊕ 〈αji, cj〉 = 〈γj, kj〉, are independent and

〈γj, kj〉 = 0 with probability pj for all j’s, one can see that the probability of the ith

linear characteristic (α0 = α0i, α1i, · · · , α(r−1)i, αr = αri) is

1
2 + 2r−1

r∏
j=1

(
pj −

1
2

)

Consequently, the correlation of ith linear characteristic (α0 = α0i, α1i, · · · , α(r−1)i, αr =
αri) is

Ci =
r∏
j=1

CFj
(α(j−1)i, αji).

It is well known, see e.g., [44], that the correlation of a linear approximation is the sum

of all correlations of linear trails starting with the same mask α and ending with the

same mask β, i.e., CF (α0, αr) = ∑Nl
i=1Ci, where Nl is the number of all the possible

linear characteristics between (α0, αr).

The correlation of a linear trail is key dependent but only the sign of the correlation

depends on the key. More precisely, in [44] the following formulas were proven under

the assumption that we have a key-alternating cipher2:

Ci = (−1)si

r∏
j=1

CFj
(α(j−1)i, αji),

where si ∈ F2 depends on the i-th linear characteristic and the round keys.

Therefore, the correlation of the linear hull (α, β) is

CF (α, β) =
Nl∑

i=1|αi=(α=α0i,··· ,α(r−1)i,β=αri)
(−1)si⊕di |Ci| (2.2)

2Key-alternating ciphers are a subclass of Markov ciphers that alternate key additions with key-
independent rounds.
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where the sign di ∈ F2 denotes the sign of the correlation, Ci.

Let C denote the correlation matrix of an n-bit key-alternating cipher. C has size 2n×2n

(or (2n−1)×(2n−1) when we exclude the zero input or output masks), the (i, j) entry in

C corresponds to the correlation of an input mask, say βi, and output mask, say βj, i.e.

CF (βi, βj) = 2 Pr(〈βi, x〉 = 〈βj, F (x)〉)− 1, where F is the un-keyed composite function

of the key-alternating cipher and ‘x’ is its input. Now the correlation matrix for the

keyed round function is obtained by changing the signs of each row in C according to

the round subkey bits or the round constant bits involved.

Key Recovery and Data Complexity of a Linear Attack: A basic linear attack

recovers one bit of information about the secret key. This is often called in the literature

as Matsui’s algorithm 1 which is a distinguishing attack of the cipher under consideration

since it doesn’t recover the whole key but distinguishes the cipher from a randomly

chosen permutation. The following algorithm describes the basic linear attack.

Algorithm 1 Matusi’s distinguishing attack

Require: N known plaintexts (m, c)
Require: Tb ≡ the number of times 〈m,α〉 ⊕ 〈c, β〉 = b where b ∈ F2

1: for all the N known plaintexts (m, c) do
2: Compute b = 〈m,α〉 ⊕ 〈c, β〉
3: Increment Tb
4: end for
5: if T0 >

N
2 then

6: Guess 〈γ, k〉 = 0.
7: else
8: Guess 〈γ, k〉 = 1.
9: end if

In the following we estimate the data complexity needed to perform the basic linear

attack successfully. Without loss of generality, assume that T0 >
N
2 and that m·α⊕c·β =

0 holds with probability p = 1
2 + ε where ε > 0. Then

Pr(Success) = Pr
(
T0 >

N

2

)
= 1− Pr

(
T0 ≤

N

2

)

T0 is random variable and it is the sum of N identically distributed and mutually

independent binary random variables Xi ∈ F2 which have the following probability
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distribution.

Pr(X = Xi) =


1
2 + ε, Xi = 1
1
2 − ε, Xi = 0

Clearly T0 follows a binomial distribution with an expected value E(T0) = Np = N(1
2+ε)

and variance V (T0) = Np(1− p) = N(1
4 − ε

2). So T0 ∼ B(N(1
2 + ε), N(1

4 − ε
2)). When

N is large, then using the Central Limit Theorem the probability distribution of

x = T0 −Np√
Np(1− p)

=
T0 −N(1

2 + ε)√
N(1

4 − ε2)

can be approximated by the standard normal distribution Φ(x), i.e. x ∼ N (0, 1).
Therefore,

Pr(Success) = 1−Pr
(
T0 −

N

2 − εN ≤ −εN
)

= 1−Pr
T0 − N

2 − εN√
N(1

4 − ε2)
≤ −εN√

N(1
4 − ε2)



Assume that ε is small, then ε2 can be ignored, Thus

Pr(Success) = 1− Pr
x ≤ −εN√

N(1
4 − ε2)

 ≈ 1− Φ(−2ε
√
N)

When N = ε2,

Pr(Success) = 1− Φ(−2) = 1− 0.02 = 0.98

Therefore having data complexity N = c
ε2

where c is a small integer, the success rate will

be almost 1. More key information can be recovered using a simple algorithm similar to

the key recovery procedure in the differential attack. Suppose we have an r round cipher

with a round function f , we use an (r − 1) linear approximation to recover log2(l) bits

from the last round key kr by the following algorithm which is known in the literature

as Matsui’s algorithm 2.

Unlike the distinguishing attack whose success rate is easily evaluated as discussed

above, the success rate of the key recovery attack is more complicated. One assump-
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Algorithm 2 Matusi’s algorithm 2

Require: N known plaintexts (m, c)
Require: (r − 1) linear approximation (α0, αr−1)
Require: 2l key counters, namely T0,0 · · · , T0,l−1 and T1,0 · · · , T1,l−1

1: for all the N known plaintexts (m, c) do
2: for all the l guessed key values for kr do
3: Compute b = m · α0 ⊕ f−1(c, l) · αr−1
4: Increment Tb,l
5: end for
6: end for
7: Find the counter Ti,t that have the maximum value
8: Guess that kr = t

tion that is used in determining the success rate is that wrong key guesses to the key

information results in having random values for ĉr−1 = f−1(c, l). In other words ĉr−1 is

treated as being equivalent to the ciphertext obtained after (r + 1) rounds, cr+1. This

is known in the literature as the hypothesis of wrong key randomization [58]. For more

details about the success rate, we refer the reader to the work of [104] as it provides

a formula depending on the key length and the amount of plaintext to estimate the

success probability of a linear attack. As noted in [104], approximating the binomial

distribution of the counters to a normal distribution gives accurate results in linear

attacks compared to differential attacks.

Several papers tried to extend linear cryptanalysis by using multiple linear approxima-

tions [10, 15, 62, 63, 70] to either reduce the data complexity or gain more information

about the key. Below we discuss the multidimensional linear attack [62,63] which is an

improvement over all the previously proposed attacks that use multiple linear approxi-

mations.

Multidimensional Linear Attack: We start by defining the mutual capacity be-

tween two probability distributions and the squared Euclidean distance and show its

relation to the capacity since they are both used in estimating the data complexity of

the multidimensional linear attacks.

The term capacity was firstly defined and used by Biryukov et al. in [15] where they

estimated the data complexity to be inversely proportional to the capacity of the multiple

linear approximations. Later the term was generalized by Hermelin et al. in [62] in order

to estimate the data complexity of their multidimensional linear attack.
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Definition 3. Let p = (p0, · · · , pM) and q = (q0, · · · , qM) be two probability distribu-

tions. Their mutual capacity is then

Cap(p, q) =
M∑
i=0

(pi − qi)2

qi

Thus given a vectorial Boolean function F : Fn2 → Fm2 , the mutual capacity of the

probability distribution p of the output of F and the uniform distribution is called the

capacity of p and is given by

Cap(p) =
∑
y∈Fm

2

(2−n · |{x ∈ Fn2 | F (x) = y}| − 2−m)2

2−m (2.3)

The Squared Euclidean distance is defined as follows

D(p) =
∑
y∈Fm

2

(
2−n · |{x ∈ Fn2 | F (x) = y}| − 2−m

)2
(2.4)

and it differs from the capacity by a factor of 2m, i.e. D(p) = 2−m Cap(p).

Suppose that we have a vectorial Boolean function F : Fn2 → Fn2 . Let αi ∈ Fn2 and

βi ∈ Fn2 be input and output masks respectively. Define the following gi functions where

1 ≤ i ≤ m:

gi(x) = 〈βi, F (x)〉 ⊕ 〈αi, x〉

Denote by Ci the correlation of gi, 1 ≤ i ≤ m and let them be defined as the base

correlations. Let C(0, a) refers to the correlation of the linear approximation 〈a, gi(x)〉.
For instance if a = ei = (0, 0, · · · , 1, · · · ) is a unit vector with 1 at position i, then

C(0, a) = C(0, ei) = C(αi, βi) and this holds for 1 ≤ i ≤ m. When a 6= ei, then

C(0, a) corresponds to a correlation of one of the combined approximations, i.e. if

a = ei ⊕ ej then C(0, a) is the correlation of the linear approximation gi(x) ⊕ gj(x) =
〈βi + βj, F (x)〉 ⊕ 〈αi + αj, x〉. In other words C(0, a) = C(αi ⊕ αj, βi ⊕ βj).

Let p = (p0, p1, · · · , p2m−1) be the probability distribution of the above m-dimensional

linear approximations. In order to estimate the capacity of the distribution in terms of

the correlations of the corresponding linear approximations we use the following Lemma

which was proved in [62].
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Lemma 2.2.1. Let g : Fn2 → Fm2 be a vectorial Boolean function with probability distri-

bution p and single linear correlations C(0, a) of 〈a, g〉. Then

pi = 2−m
∑
a∈Fm

2

(−1)〈a,i〉C(0, a).

It is noted in [62] that the capacity can be expressed in terms of correlations or Fourier

coefficients of the linear approximations involved in the multidimensional distribution

by using the above Lemma in addition to the following relation which is known as

Parseval’s relation [34] ∑
u∈Fn

2

ϕ̂(u)2 = 2n
∑
x∈Fn

2

ϕ(x)2,

where ϕ̂(u) = ∑
x∈Fn

2
ϕ(x)(−1)u·x and ϕ(x) ∈ {1,−1} for any x ∈ Fn2 . In the following

proposition, we show these relations between the capacity and the correlations or Fourier

coefficients.

Proposition 2.2.2. [62] Let g = (g1, · · · , gm) be a an m-dimensional vectorial Boolean

function, where gi is the boolean function defined above. Suppose that g has a probability

distribution p = (p0, · · · , p2m−1). Then

Cap(p) =
∑
a6=0

(C(0, a))2 = 2−2n∑
a6=0

(F̂ (0, a))2.

Proof. From the above lemma, we know that

pi = 2−m
∑
a∈Fm

2

(−1)〈a,i〉C(0, a)

where 1 ≤ i ≤ 2m. Now using Parseval’s relation, we see that

2m
∑
i

p2
i =

∑
a

C(0, a)2.
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Therefore,

Cap(p) = 2m
∑
i

(pi − 2−m)2 = 2m
∑
i

p2
i − 2−m+1pi + 2−2m

= 2m
∑
i

p2
i − 2m

∑
i

2−m+1pi + 2m
∑
i

2−2m

=
∑
a

C(0, a)2 − 2
∑
i

pi + 1 =
∑
a

C(0, a)2 − 1

=
∑
a6=0

(C(0, a))2 = 2−2n∑
a6=0

(F̂ (0, a))2

In [63], two different statistical methods were proposed to recover the secret key using

m-dimensional linear approximations. Namely, the goodness of fit method and this is

usually based on χ2-statistic and the method of distinguishing an unknown probability

distribution from a given set of probability distributions and this is usually based on

Log Likelihood Ratio (LLR-statistic). Below we only describe the χ2 method which

is the one that was applied to the block cipher PRESENT. For more details about

the LLR method, we refer the reader to [63]. It has been noted in [38] that the LLR

method cannot be applied in PRESENT as the probability distribution of the linear

approximations in PRESENT depends heavily on the key (See Chapter 3 and Chapter

4).

Suppose we would like to recover l bits of the target key. Then for each key value k ∈ F2l ,

we obtain the empirical probability distribution for each key qk = {qk,0, qk,1, · · · , qk,2m−1}
by computing the probability of the m-dimensional vectors which are Boolean values of

m linear independent approximations. Now given the empirical probability distribution

qk, a key recovery attack is mounted by computing the χ2 statistic

S(k) = 2m
2m−1∑
i=0

(
qk,i − 2−m

)2

which also represents the squared Euclidean distance from the uniform distribution.

Now according to the wrong key hypothesis mentioned above, the right key value is the

one that yields the maximum squared Euclidean distance from the uniform distribution.

Therefore, the right key is the one for which the statistic S(k) is the largest. For more

details about the success rate and data complexity of the multidimensional attack using

the χ2 method, we refer the reader to [63].

28



Recently a new attack called the statistical saturation attack [39] was shown in [82] to be

similar to multidimensional linear attacks. Below we describe the statistical saturation

attack and show its link to the multidimensional linear attack.

Statistical Saturation Attack: The statistical saturation attack was developed in

[39] by Collard and Standaert to attack reduced-round PRESENT. The attack fixes

some plaintext bits and exploits the bias at some output bits. The attack computes the

Squared Euclidean distance between the distribution of the targeted output bits and the

uniform distribution. The attack breaks 24 rounds of PRESENT. The data complexity

of their attack was estimated to be proportional to the inverse of the squared Euclidean

distance. To estimate the Squared Euclidean distance the authors propose an algorithm

to calculate the theoretical distribution of 8 output bits of PRESENT. The algorithm

guesses some subkey bits at each round and therefore cannot be applied for several

number of rounds. Later, Leander [82] provided a useful method to estimate the average

capacity of statistical saturation attacks. His method shows that statistical saturation

attacks are closely related to multi-dimensional linear attacks. In the following we

discuss Leander’s method.

Let e : Fn2 → Fn2 be an encryption function. Now write e as follows e : Fr2×Fs2 → Ft2×Fu2
where

e(x, y) =
(
e(1)(x, y), e(2)(x, y)

)
(2.5)

where r + s = t+ u = n, e(1)(x, y) ∈ Ft2 and e(2)(x, y) ∈ Fu2 .

The statistical saturation attack fixes ‘s’ bits and considers ‘t’ bits at the output. For

simplicity we fix the last ‘s’ bits and consider the distribution of the first ‘t’ bits. Denote

this restriction of e by hy : Fr2 → Ft2 where

hy(x) = e(1)(x, y) (2.6)

where y ∈ F2s denotes the fixed ‘s’ input bits, and let py be the probability distribution of

the output ‘t’ bits of hy. Leander provided a formula to estimate the average capacity of
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py. The formula was proven using the following proposition which establishes a relation

between the Fourier of a Boolean function and the Fourier of its restrictions.

Proposition 2.2.3. [33] Let E and E ′ be subspaces of F2n such that E ∩E ′ = {0} and

whose direct sum equals F2n. For every a ∈ E ′, let ha be the restriction of a Boolean

function f : F2n → F2 to the coset a + E (ha can be identified with a function on F2k

where k is the dimension of E). Then

∑
u∈E⊥

(f̂(u))2 = |E⊥|
∑
a∈E′

(ĥa(0))2

The following theorem gives the formula.

Theorem 2.2.4. [82] With the above described notation, the average capacity of sta-

tistical saturation attacks where the average is taken over all possible fixations y ∈ F2s

is given by

Cap(py) = 2−2n ∑
a∈{0}×Fs

2,b∈F
t
2×{0}

(ê(a, b))2 =
∑

a∈{0}×Fs
2,b∈F

t
2×{0}

(C(a, b))2 (2.7)

where C(a, b) refers to the correlation of approximating 〈b, e(x1, x2)〉 by 〈a, (x1, x2)〉
where x1 ∈ Fr2 and x2 ∈ Fs2.

Proof. [82]

The average capacity of py over all the possible y fixations is given by

Cap(py) = 2−s
∑
y∈F2s

Cap(py)

Now since hy is defined as follows hy : Fr2 → Ft2, then using proposition 2.2.2, we see

that

Cap(py) = 2−s
∑
y∈Fs

2

Cap(py) = 2−s
∑

a∈{0}×Fs
2,b∈F

t
2×{0}

2−2r(ĥa(0, b))2

Now applying Proposition (2.2.3) on the function 〈b, e〉 and its restriction 〈b, hy〉 where

we choose E = Fr2 × {0} and E ′ = E⊥ = {0} × Fs2 gives us

∑
u∈{0}×Fs

2

(ê(u, b))2 = 2s
∑

a∈{0}×Fs
2

(ĥa(0, b))2
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Now using the above equations, we see that

Cap(py) = 2−s
∑

a∈{0}×Fs
2,b∈F

t
2×{0}

2−2r(ĥa(0, b))2 = 2−2s−2r ∑
a∈{0}×Fs

2,b∈F
t
2×{0}

(ê(a, b))2

Now applying Identity (2.1) to the above equation, we see that

Cap(py) = 2−2n ∑
a∈{0}×Fs

2,b∈F
t
2×{0}

(ê(a, b))2 = (C(a, b))2

Clearly the last equality shows that statistical saturation attacks and multidimensional

attacks are very similar attacks since the average capacity of the statistical saturation

attack and the capacity of multidimensional linear approximations (shown in proposition

2.2.2) are equivalent.

Statistical saturation attacks perform well when we identify any input subspace U ⊂ F2n

and any output subspace V ⊂ F2n that make the sum
∑
u∈U,v∈V (CF (u, v))2 big (U

corresponds to the input masks and V corresponds to the output masks).

The average squared correlation (aka potential linear approximation [90] or expected

linear probability [45], see 4.2.2) of the linear approximation (a, b) is used to estimate

the average data complexity of multidimensional attacks or statistical saturation attacks

over all the key space. Specifically, the data complexity of statistical saturation attacks

is estimated to be proportional to the inverse of D(py) = 2−tCap(py) according to the

original attack paper [39] and to also some experiments in [82].

While Theorem 2.2.4 considers an input subspace consisting of fixing the last s input

bits and an output subspace consisting of the first t output bits, the Theorem also holds

in general as noted in [82]. For instance, we can restrict the above defined encryption

function e to the case where one fixes the first r bits in the input to y and considers only

the first t bits of the output. Thus e can be written as follows e : Fr2 × Fs2 → Ft2 × Fu2
where

e(y, x) =
(
e(1)(y, x), e(2)(y, x)

)
(2.8)

and its restriction hy can be redefined as follows hy : Fs2 → Ft2 where
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hy(x) = e(1)(y, x) (2.9)

Now following the proof of Theorem 2.2.4 and choosing E = {0} × Fs2 and E ′ = E⊥ =
Fr2 × {0}, one can see that

Cap(py) = 2−2n ∑
a∈Fr

2×{0},b∈Ft
2×{0}

(ê(a, b))2 =
∑

a∈Fr
2×{0},b∈Ft

2×{0}
(C(a, b))2 (2.10)

In Chapter 6, we use equation 2.10 to show the existence of linear approximations with

large correlations in PRINTcipher for some weak keys in the sense of the invariant subspace

attack described in Chapter 6.

Zero Correlation Cryptanalysis: More recently, Bogdanov and Rijmen in [25] proposed

a new attack called Zero-correlation cryptanalysis and as the name suggests the attack exploits

linear approximations having a zero correlation for any key value. Thus, zero correlation

attacks are the linear equivalent of impossible differential attacks. The authors propose an

algorithm that computes the exact correlation of a linear approximation using 2n−1 chosen

plaintexts, where n is the block size of the cipher. The algorithm is used to distinguish a block

cipher with a key length larger than its block size from truly random ciphers which deviate

from zero with a high probability. The authors showed examples of zero correlations linear

approximations of reduced rounds of AES and other ciphers and they used them to mount a

key recovery attack on reduced rounds of AES-192 and AES-256 as well as other ciphers.

Moreover, in [26], the authors propose a statistical technique to significantly reduce the data

complexity using many zero correlation linear approximations and they applied their technique

in reduced rounds of TEA and XTEA. For instance, when using l zero correlation approxima-

tions the data complexity will be in the order of 2n
√
l

which is a significant reduction compared

to the 2n−1 data complexity when only one zero correlation approximation is used. More

recently, in [24], the authors propose a multidimensional zero correlation attack that uses

multiple zero correlation approximations regardless of their statistical independence.
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2.3 Estimating the Probabilities of Differential and

Linear Approximations

There are two known automated methods for estimating the differential probability of a dif-

ferential approximation and the correlation value of a linear approximation.

The first method uses a submatrix of the difference transition matrix or a submatrix of the

correlation matrix as the difference transition and correlation matrices of an n-bit block cipher

have size (2n−1)×(2n−1) which is huge for a practical block cipher. The difference transition

submatrix was firstly proposed and used by Lai and Massey in their differential estimations

of the block cipher PES which was improved to the famous block cipher IDEA [81]. In their

differential analysis of PES, an 8× 8 submatrix was used. This submatrix approach has also

been used recently to estimate the differential probabilities of the 64-bit block cipher Maya [52]

where a 64×64 submatrix was used [27]. The correlation submatrix approach has been recently

used in estimating the correlation of the linear approximations in SPONGENT [21].

The second method uses a branch and bound algorithm. This method was firstly proposed and

used by Matsui to find the best differential characteristic of the DES cipher [87]. As noted by

Matsui, the algorithm can also be used to find the best linear characteristic. Matsui’s branch

and bound algorithm can be seen as a depth first search algorithm that first finds the best

(r − 1)-round differential or linear characteristic and then finds the best r-round differential

or linear characteristic. The algorithm builds trees whose roots are input differences or masks

and whose nodes at level i correspond to the i-round output differences or output masks. As

the number of rounds increases, it becomes infeasible to keep track of all the possible output

differences or masks. Therefore, the algorithm cuts the branches that lead to a probability

that is lower than an initial specified r-round lower bound probability value. The following

recursive procedures describe Matsui’s branch and bound algorithm.

Several techniques could be used to reduce the search space of the possible ∆X1 and ∆Yi in

the above algorithm. For instance, we can restrict the input differences to activate as few

Sboxes as possible since this usually results in obtaining higher probabilities. As Matusi’s

branch and bound finds only the best differential, in order to estimate the probability of a

difference approximation we need to adjust the branch and bound algorithm to find the best

‘m’ differential characteristics (with the same input and output difference) probabilities and

add all these ‘m’ probabilities to get an estimate of the total probability of the differential.

Similarly, in order to estimate the correlation or the average squared correlation of a linear

hull, we need to find the best ‘m’ linear characteristics (with the same input and output mask)

and add them to get the correlation in the case that the key is known or the average squared

correlation in the general case where the key is not known of a linear hull.
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Algorithm 3 Matusi’s branch and bound algorithm

Require: Initial probability values {B1, B2, · · · , Br}, where each Bi is the initial esti-
mate of the best i-round differential characteristic probability.

Require: Define (∆Xi,∆Yi) as the probability of having an input difference ∆Xi at
round i with an output difference ∆Yi at round i.

Ensure: Br ≡ Best r-round differential characteristic probability

1: BEGIN main procedure
2: for each possible candidate ∆X1 do
3: p1 = max∆Y1(∆X1,∆Y1)
4: if p1 ×Br−1 ≥ Br then
5: Call procedure Round-2
6: end if
7: end for
8: EXIT main procedure

9: procedure Round-i (2 ≤ i ≤ r − 1)
10: for each possible candidate ∆Yi do
11: Let ∆Xi = ∆Yi−1 and pi = (∆Xi,∆Yi).
12: if p1 × p2 × · · · × pi ×Br−i ≥ Br then
13: Call procedure Round-(i+ 1)
14: end if
15: end for
16: Return to the upper procedure.

17: procedure Round-r
18: Let ∆Xr = ∆Yr−1 and pr = max∆Yr(∆Xr,∆Yr).
19: if p1 × p2 × · · · × pr ≥ Br then
20: Br = p1 × p2 × · · · × pr
21: end if
22: Return to the upper procedure.
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2.4 Security Against Differential and Linear Crypt-

analysis

Differential and linear cryptanalysis are the most powerful attacks against block ciphers. Since

their invention and application on the DES cipher, two approaches have been followed to resist

against these two attacks [79]. One approach concerns with the improvement of the overall

structure of a block cipher in order to resist differential and linear attacks. The other approach

improves the resistance provided by the cipher components. Here we discuss the component

approach, for more details about the structure approach we refer the reader to [79].

As the round function of most modern block ciphers consist of a linear component (linear

transformation) and a non linear component (Sboxes), designers tend to make the probabil-

ities of differential and linear characteristics as small as possible by selecting an appropriate

Sbox as well as an appropriate linear transformation. An appropriate Sbox is a one whose

linear and differential approximations have the smallest probabilities among all the possible

Sboxes of the same size. An appropriate linear transformation is a one that has a good dif-

fusion in the sense that every output bit depends on all the input bits after a few number of

rounds. Designers also give bound to the probability of a differential or linear characteristic by

counting the minimum number of the so-called active sboxes which are the set of Sboxes that

a non-zero input difference of the differential characteristic or a non-zero input mask of the

linear characteristic passes through them. Clearly, the linear transformation together with the

differential and linear properties of the chosen Sbox determines the number of active Sboxes.

The most notable design approach that bounds the probability of a differential and linear

characteristic in a few number of rounds is the wide trail strategy [43] which was used in the

design of the AES. The wide trail strategy simply consists of choosing the best possible Sbox

together with designing a linear transformation layer that prevents the existence of differential

and linear characteristics with low hamming weight. This results in increasing the number of

active Sboxes in a few number of rounds and thus lowering the probabilities of differential and

linear characteristics.

2.5 Other Attack Variants

Many other attacks exist on both block and stream ciphers. In the following we briefly describe

the slide attacks and the algebraic attacks.
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Slide Attacks: The slide attacks [16] were proposed to attack iterated block ciphers re-

gardless of the number of rounds that they use. Slide attacks target ciphers that use identical

round functions accompanied with a simple key schedule that uses identical round keys or

alternates between two keys every round. Let F be the round function of the target block

cipher. Then slide attacks look for two known plaintext/ciphertext pairs (P1, C1) and (P2, C2)
such that P2 = F (P1). If we find a P2 such that P2 = F (P1), then consequently, C2 = F (C1).
Such pairs are called slid pairs. Now if F is weak then the key could be derived from the two

relations P2 = F (P1) and C2 = F (C1).

Algebraic Attacks: These kind of attacks exploit ciphers that can be expressed by a

sparse multivariate non-linear equation system over the binary field F2 with the secret key

bits as unknown variables and the plaintext/ciphertext pairs as the known variables. In

general, solving random multivariate nonlinear system of equations is an NP-hard problem

[51]. However, some techniques depending on the structure of the nonlinear system under

consideration such as Gröbner basis and linearization are used to solve the nonlinear system

in a reasonable time. While the Gröbner basis approach can sometimes take a reasonable

amount of time, the Gröbner basis algorithms are hard to predict and in the worst case they

have exponential complexity. The linearization approach replaces all the nonlinear terms in

the equations with new independent variables in order to get a system of linear equations that

have enough linearly independent equations which could be solved using Guassian elimination

algorithm. If the new system is solvable, the attacker would then substitutes results back

into the original system of equations to yield the secret key bits. Such simple linearization

techniques were applied successfully against some stream ciphers [40].
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Chapter 3

Lightweight Cryptography

Lightweight cryptography deals with the design of cryptographic primitives that are suitable

to fit and run on small hardware devices such as RFID tags, sensor networks and contactless

smart cards. Before the era of lightweight primitives, the landmark paper [50] proposes a low-

cost implementation of the AES that costs around 3595 GE which is expensive for low-cost

small devices 1. This might indicate that implementing standard cryptographic algorithms on

highly constrained devices is not an easy task.

The cryptographic community has pursued two directions to solve this problem: the first direc-

tion designs new solutions based on new cryptographic algorithms and protocols for lightweight

devices. One solution in this direction belongs to the HB family which is a set of symmetric

key challenge-response authentication protocols whose security is based on the hardness of the

Learning Parity with Noise (LPN) problem [65,71]. Another solution is the one-way function

SQUASH which is a lightweight MAC proposed by Shamir [105]. The second direction de-

signs lightweight cryptographic algorithms by reducing the state size and the hardware cost

of the linear and nonlinear components of the cryptographic algorithm without making any

compromise in security.

Thus, the challenge is in coping with the tradeoffs among security, hardware cost and per-

formance. Saving area and power consumed by the cryptographic algorithm but at the same

time avoiding any compromise concerning the security of the cryptographic algorithm. In this

thesis, we are concerned with analyzing lightweight solutions that go inline with the second

direction.

In this chapter, we give a short description about the lightweight ciphers that we studied in

this thesis, namely, PRESENT, PRINTcipher and A2U2. We also give an overview about

some of the attacks reported on them.

1A very compact implementation has been recently proposed in [89] requires 2400 GE
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3.1 Lightweight Ciphers

Few years later after the publication of [50], many ciphers were developed for minimal hardware

requirements. These lightweight ciphers have a small state or block size that are usually less

than or equal 64. They also use a smaller key size compared to the standard encryption

algorithms. Most of them use an 80 bit master key. In the following, we give a short description

of the three ciphers that we investigated in this thesis. Namely, the block ciphers PRESENT,

PRINTcipher and the stream cipher A2U2. We also investigated the core permutation of

SPONGENT-88 which can be seen as a block cipher with a zero key xored with a round

constant.

3.1.1 A Short Description of PRESENT and SPONGENT

One of the most prominent lightweight ciphers is the block cipher PRESENT proposed in

2007 [23]. It is an SPN consisting of 31 rounds. It has a 64-bit block size and uses an 80-bit

master key (recommended for lightweight applications) or 128-bit master key. PRESENT-80

requires 1570 GE. The PRESENT round function consists of three layers (See Algorithm 4

and Figure 3.1), namely, the key addition layer, the Sbox layer (the nonlinear layer) and the

permutation layer (the linear layer). The key addition layer simply xors the current state

with the round key generated by the PRESENT key schedule (for more details about the key

scheduling we refer to [23]).

The Sbox layer applies 16 times in parallel a single 4-bit Sbox. The PRESENT Sbox is

described in the following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

Beside being chosen to be well-suited for efficient hardware implementation, the PRESENT

Sbox has been chosen to fulfill several conditions to strengthen PRESENT against differential

and linear cryptanalysis. More precisely, the PRESENT Sbox was chosen from a set of

Sboxes, S : F4
2 → F4

2, whose difference approximation table (as defined in Chapter 2) fulfills

the following two conditions:

1. The probability that a nonzero input difference ∆X ∈ F4
2 has a nonzero output difference

∆Y ∈ F4
2, Pr(∆X,∆Y ) ≤ 1

4 for all ∆X and ∆Y .

2. For any nonzero input difference ∆X ∈ F4
2 and any nonzero output difference ∆Y ∈ F4

2

with Hamming weight 1, Pr(∆X,∆Y ) = 0.
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and whose linear approximation table (as defined in Chapter 2) fulfills the following two

conditions:

1. The correlation of approximating 〈b, S(x)〉 by 〈a, x〉, C(a, b) ≤ 1
2 .

2. For all the nonzero input masks a ∈ F4
2 and all the nonzero output masks b with Ham-

ming weight 1, C(a, b) = ±1
4 .

The Permutation layer uses a bitwise permutation (See Figure 3.1) which costs only wires and

0 GE. The bitwise permutation is chosen so that full dependency (each output bit is dependent

on all the input bits) is gained after a minimal number of rounds.

As noted in [77], for an SPN with block size b and s bit Sboxes, where s divides b, the following

bit permutation

P (i) =

 b
s × i mod b− 1 for 0 ≤ i ≤ b− 2,
b− 1 for i = b− 1,

and also its inverse

P−1(i) =

 s× i mod b− 1 for 0 ≤ i ≤ b− 2,
b− 1 for i = b− 1,

provide optimal diffusion as full dependency is gained after dlogs be rounds.

In particular, PRESENT uses the above P (i) with b = 64 and s = 4 and thus it gains full

dependency after 3 rounds whereas PRINTcipher uses the inverse of P (i) as its bitwise per-

mutation as we will see later in its description. The significance of these optimal permutations

is in thwarting statistical attacks with a smaller number of rounds compared to the case where

non-optimal permutations are used. Constructing or finding these optimal permutations is not

a trivial task as they are very rare. For more information about constructing optimal bitwise

permutations we refer the reader to [82].

The simple and neat structure of PRESENT allowed its designers to give upper bounds on

the probability of a differential characteristic and the bias of a linear characteristic. More

specifically, the probability of a 4-round differential characteristic is upper bounded by 2−20

and thus the probability of a 25-round is upper bounded by 2−100(≤ 2−64) and the absolute

correlation value of a 4-round linear characteristic is upper bounded by 2−6 and thus the

absolute value for a 28-round linear characteristic is upper bounded by 2−42(≤ 2−32).

SPONGENT is a new lightweight hash function [22], its core permutation is inspired by

PRESENT as it inherits its three layers. There are many variants of SPONGENT depending

on its hash size and the block size of its permutation.
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Algorithm 4 Pseudo-code of the PRESENT cipher

Require: Plaintext = P , K = (K0, K1, · · · , Kr)
Ensure: C = EK(P )

1: STATE ← P
2: for i=0:r-1 do
3: STATE ← STATE ⊕Ki

4: STATE ← SboxLayer(STATE)
5: STATE ← PLayer(STATE)
6: end for
7: STATE ← STATE ⊕Kr

Fig. 3.1: One round of the block cipher PRESENT.

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S S

The permutation layer of SPONGENT is the same as PRESENT except that it is wider.

The SPONGENT Sbox has been chosen according to the same criteria of the PRESENT

Sbox. It has been chosen carefully to avoid the existence of many linear trails with only one

active Sbox per round found on PRESENT. The SPONGENT Sbox is described in the

following table.

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] E D B 0 2 1 4 F 7 A 8 5 9 C 3 6

The core permutation of SPONGENT can be seen as a cipher using identical round keys (the

key is almost the zero key with few bits at the leftmost and the rightmost generated from a

counter that is meant to prevent sliding properties and invariant subspaces).

In other words, the core permutation of SPONGENT can be seen as a PRESENT-like cipher

which is a definition we borrowed from [27]. Thus the core permutation of SPONGENT can

then be represented by the above pseudo-code of PRESENT using zero round keys xored

with the corresponding round constant. For more details about the description of PRESENT

and SPONGENT, we refer to [22,23].
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3.1.2 A Short Description of PRINTcipher

PRINTcipher is a PRESENT-like block cipher proposed in 2010 [77]. It has two variants

PRINTcipher-48 and PRINTcipher-96 mainly designed to exploit the properties of IC-

printing technology which targets the fabrication of cheap RFID tags. PRINTcipher-48 and

PRINTcipher-96 require only 402 GE and 726 GE respectively.

To reduce the size of the implementation, PRINTcipher uses a 3-bit Sbox that costs less than

12 GE but at the cost of having more rounds to thwart differential and linear cryptanalysis.

It also uses a small block size, only 48 bits, in its smallest variant, Moreover, it uses a fixed

key since it is very unlikely that the secret key of an RFID tag will be changed.

Regular IC technology allows all versions of the cipher to be identical and as a post-fabrication

step it personalizes each RFID tag with a unique key. However, with IC-printing technology

there is a little cost in changing the circuit that is printed at each run. Thus, part or all of

the secret key can be embedded into the algorithm description.

PRINTcipher-48 (resp -96) is a PRESENT-like cipher with a block size of b = 48 (resp

b = 96) bits and 48 (resp 96) rounds. The key size is 80 bits for PRINTcipher-48 and 160
bits for PRINTcipher-96. PRINTcipher uses a single 3 bit Sbox shown in the following

table.

x 0 1 2 3 4 5 6 7

S[x] 0 1 3 6 7 4 5 2

In the non-linear layer the current state is split into 16 words of 3 bits for PRINTcipher-48

and into 32 words of 3 bits for PRINTcipher-96 and each word is processed by the Sbox in

parallel. The linear layer consists of the inverse of the PRESENT permutation with b = 48
or b = 96 and s = 3.

The peculiar part of PRINTcipher is to have all rounds identical up to adding a round

constant on a small number of bits. Here identical has to be understood as including the

round key, in other words, all round keys are identical. As a simple round key xored to

the state in each round limits the key size to 48 resp 96 bits, an additional key-dependent

permutation layer was introduced. This permutation layer permutes the input bits of each

Sbox individually. Out of 6 possible permutations on 3 bits, only four are valid permutations

for PRINTcipher.

For PRINTcipher-48 the 80-bit user-supplied key k is split into two subkeys k = sk1||sk2

where sk1 is 48 bits long and sk2 is 32 bits long. The first subkey sk1 is xored to the state at

the beginning of each round. The second subkey sk2 is used to generate the key-dependent

41



permutations in the following way. The 32-bits are divided into 16 sets of two bits and each

two-bit quantity a1||a0 is used to pick one of four of the six available permutations of the

three input bits. Specifically, the three input bits c2||c1||c0 are permuted to give the following

output bits according to two key bits a0||a1.

a1||a0

00 c2||c1||c0

01 c1||c2||c0

10 c2||c0||c1

11 c0||c1||c2

One round of PRINTcipher-48 is shown in Figure 3.2.

Fig. 3.2: One round of PRINTcipher-48 illustrating the bit-mapping between the 16 3-bit
Sboxes from one round to the next. sk1 denotes the xor key, p the permutation key, and RCi

the round counter.
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3.1.3 A Short Description of A2U2

The stream cipher A2U2 was presented at IEEE RFID 2011 [46]. It has a key length of 56
bit. The cipher’s inner state consists of a counter LFSR C (7 bits), two non-linear feedback

shift registers A and B (NFSRs, 17 and 9 bits), and a key register K (56 bits). Note that we

use a different notation than in the original paper, ours being more suitable for cryptanalysis.

Even though this is not apparent from the original paper [46], the authors confirmed upon

request that the cipher first outputs and then updates its inner state. In the following, the

opposite order is used, though purely for didactical reasons.
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Updating the Counter: In the following, we denote the state of the counter LFSR at

time t by Ct = (Ct, Ct−1, . . . , Ct−6), for t = 0, 1, . . .. The starting state after initialization

is C0 = (1, 1, . . . , 1), see below under “Initialization”. The LFSR then uses the feedback

recurrence

Ct = Ct−7 + Ct−4

for updating the state for t ≥ 1. It is an m-LFSR, i.e. it has maximal period (i.e., 27 − 1).

Updating the NFSRs: We denote the state of the NFSRs by At = (At, . . . , At−16) and by

Bt = (Bt, . . . , Bt−8). The update uses an auxiliary variable ht (defined below under “Updating

the key register”) and the following non-linear feedback recurrences:

Bt = At−17 +At−15At−14 +At−12 +At−10Ct−7 +At−7At−6At−5 +At−4At−2

At = Bt−9 +Bt−8Bt−7 +Bt−6 +Bt−3 + ht + 1,

again for t ≥ 1.

Updating the Key Register The key register is a rotation register, i.e. the state in

time t is a rotated version of the initial state. If we denote the key bits by (k0, . . . , k55), then

each state of the key register is defined as

Kt = (k5t, k5t+1, . . . , k5t+55),

where all indices are computed modulo 56.

For each round, the first five bits of the register are stored in a buffer St = (St0, . . . , St4) =
(k5t, . . . , k5t+4), and they are used to compute the auxiliary variable ht as follows:

ht = MUXCt−5(St0, St1) ·MUXCt−1(St4, At−2) + MUXCt−3(St2, St3) + 1,

where MUXz(x, y) is the multiplexer function that selects x if z = 0 and y otherwise.

Initialization: The A2U2 cipher has a 61-bit key split into two parts: A 5-bit “counter

key” and a 56-bit “register key”. In addition, the cipher receives a 32-bit random number

(which are only 31 bits used of). Key and random number are written into the registers as

follows:

� Counter Register: The 5 least significant key of the 61-bit key are used as the“counter

key” and are bitwise xored with the 5 least significant random bits. The resulting 5-bit
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vector is written into the 5 least significant bits of the counter LFSR (using the above

notation). The second MSB is set to 1, the MSB is set to 0.

� NFSRs: The next 26 key and random bits are bitwise xored and written into the NFSR

cells.

� Key Register: The 56 register key bits (to some extent the same that were used for

NFSR initialization) are stored in the key register.

Now the cipher is clocked until the counter register reaches the all-one state. This happens

after 9-126 clockings. The resulting state is called the initial state.

Output Generation: The cipher deploys a form for irregular output mechanism; it out-

puts either encrypted plaintext bits or pseudo-random bits depending on the content of NFSR

cell At. Plaintext bits have to “wait” until At = 1 before being encrypted. If we denote the

plaintext string by P = (P0, P1, . . .) and if we define σ(t) =
∑t−1
i=0 Ai with σ(0) = 0, then the

output of the cipher in round t is:

Yt = MUXAt(Bt + Ct, Bt + Pσ(t)).

3.2 Other Lightweight Primitives

There are many lightweight primitives proposed in the literature. In the following, we give a

brief description about some of them.

There are two stream ciphers suitable for lightweight applications emerged from the eStream

project. Namely, Grain [60] and Trivium [32]. Grain has a compact hardware implementation.

It consists of two variants. One uses an 80-bit key with a 80-bit initialization vector (where 16

bits are fixed to 1) which is the recommended variant. The other uses 128-bit key with an 128-

bit initialization vector (where 16 bits are fixed to 1). Both of its variants consists of a LFSR

initialized by the IV, a NFSR initialized by the secret key bits and a nonlinear output Boolean

function that takes some inputs from the LFSR and the NFSR. Grain-80 has 160 initialization

rounds and Grain-128 has 256 initialization rounds. During the initialization rounds no output

is produced but is fed back into the LFSR and the NFSR. The structure of the two variants

of Grain looks very similar but each of their components use a different Boolean function.

For instance, the NFSR of Grain-80 uses a nonlinear update function with algebraic degree 6

whereas the NFSR Grain-128 uses a nonlinear update function with algebraic degree 2 which

makes its full version suspectable to the recent dynamic cube attacks for some weak keys and
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this has led to modifying Grain-128 to Grain-128a. The hardware implementation of Grain-80

suggests a cost of 1294 GE [54] which makes it well-suited for lightweight applications.

Trivium has a very simple design. It uses an 80-bit secret key together with an 80-bit initial-

ization vector. Its internal state uses 288-bit and it consists of three interconnected NFSRs

of different lengths where each use a quadratic Boolean function. It uses 1152 initialization

rounds before producing any keystream bits. The hardware implementation of Trivium sug-

gests a cost of 2580 GE [54].

In 2009, a block cipher family called KATAN/KTANTAN was proposed [31]. It is a family

of block ciphers inspired by the stream cipher Trivium. It uses two NFSRs that update each

other. It has three variants with small block sizes, namely 32-bit, 48-bit and 64-bit. All

these variants use an 80-bit key and 255 rounds. The only difference between KATAN and

KTANTAN is in the key scheduling as in KTANTAN the key is fixed and cannot be changed.

In 2010, QUARK the first lightweight sponge-based hash function was proposed [9]. Its design

is similar to that of KATAN and Grain and its number of rounds exceed 255. It has three

variants depending on its output size together with the input size of its core permutation. Its

smallest variant fits in 1379 GE.

In 2011, lightweight AES-like primitives has been proposed. Namely, the PHOTON hash

function [56] and the LED block cipher [57] were proposed. Their diffusion layers use an MDS

matrix which can be efficiently computed in a serial way. The smallest variants of PHOTON

and LED require 865 and 966 GE respectively. Also in 2011, the block cipher Piccolo, a

generalized Feistel block cipher, was proposed [107]. Similar to PHOTON and LED, Piccolo

diffusion layer also uses an MDS matrix. Its smallest version requires less than 700 GE.

3.3 Overview of Some Attacks in PRESENT, PRINT-

cipher and A2U2

In this section, we briefly describe some of the attacks on the ciphers we analyzed in this

thesis, namely, PRESENT, PRINTcipher and A2U2.

3.3.1 Attacks on PRESENT

The PRESENT block cipher has been analyzed in several publications. In [109], a 16-round

differential attack was mounted. Later a statistical saturation attack was mounted and claimed

to break 24 rounds [39]. In [93], the author showed the existence of 32% weak keys which have
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a higher bias that makes the cipher using those weak keys distinguishable for up to 24 rounds.

In [38], a multidimensional attack was used to break 25 rounds and 26 rounds where the latter

attack used the whole code book. Recently, a multiple differential attack was mounted on

18-round of PRESENT [18]. Linear attacks were more successful in breaking more rounds

in PRESENT than differential attacks. This is due to bitwise permutation of PRESENT

together2 with the following two facts about the PRESENT Sbox:

� The fact that the design criteria of the PRESENT Sbox allows the existence of linear

characteristics with one active Sbox per round and prevents the existence of differential

characteristics with one active Sbox per round.

� The existence of eight linear approximations in the PRESENT Sbox with input and

output masks of Hamming weight one (See the linear approximations of the PRESENT

Sbox in the Figure below and Table 3.1).

Fig. 3.3: Biased 1-1 bit approximations in the PRESENT Sbox

Ohkuma exploited the second fact to find linear approximations with input and output masks

of Hamming weight one that consists of many linear characteristics activating only one Sbox

with the same absolute bias. Considering these many linear characteristics and assuming

independent round keys, Ohkuma showed that the bias distribution over the entire key space

of some r-round linear approximations of input and output masks of Hamming weight one

follows a normal distribution with average 0 and variance 2(−2r)2
N , where N is the number of

linear trails activating one Sbox per round. Therefore, 32% of the keys in the key space have an

absolute correlation≥ 2−2r√N . Such keys were defined as weak keys. Ohkuma showed that for

28-round PRESENT there are linear approximations with absolute correlation 2−38.3 < 2−42

for some weak keys. This is higher than the 2−42 upper bound for the absolute correlation

value of a linear characteristic set by the designers for 28-round PRESENT. However, as the

2It was observed in [82] that given the PRESENT bit permutation, the PRESENT Sbox is
among the 8% worst of all optimal Sboxes. Also given the PRESENT Sbox, the PRESENT bit
permutation was the worst among 221 chosen optimal permutations.
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Table 3.1: Linear Approximation Table of the PRESENT Sbox. The first column holds
the integer represenation of the binary input masks while the first row holds the integer
representation of the binary output masks. The entry (i, j) divided by 16 represents the
correlation of a linear approximation with input mask equal to the binary representation
of i and output mask equal to the binary representation of j. 1-bit to 1-bit masks are
marked with boxes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 -8 0 -8 0 0 0 0 0 -8 0 8

2 0 0 4 4 -4 -4 0 0 4 -4 0 8 0 8 -4 4
3 0 0 4 4 4 -4 -8 0 -4 4 -8 0 0 0 -4 -4

4 0 0 -4 4 -4 -4 0 8 -4 -4 0 -8 0 0 -4 4
5 0 0 -4 4 -4 4 0 0 4 4 -8 0 8 0 4 4
6 0 0 0 -8 0 0 -8 0 0 -8 0 0 8 0 0 0
7 0 0 0 8 8 0 0 0 0 -8 0 0 0 0 8 0

8 0 0 4 -4 0 0 -4 4 -4 4 0 0 -4 4 8 8
9 0 8 -4 -4 0 0 4 -4 -4 -4 -8 0 -4 4 0 0
10 0 0 8 0 4 4 4 -4 0 0 0 -8 4 4 -4 4
11 0 -8 0 0 -4 -4 4 -4 -8 0 0 0 4 4 4 -4
12 0 0 0 0 -4 -4 -4 -4 8 0 0 -8 -4 4 4 -4
13 0 8 8 0 -4 -4 4 4 0 0 0 0 4 -4 4 -4
14 0 0 4 4 -8 8 -4 -4 -4 -4 0 0 -4 -4 0 0
15 0 8 -4 4 0 0 -4 -4 -4 4 8 0 4 4 0 0
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designers’ upper bound is for a linear characteristic and not for the linear approximation or

linear hull, Ohkuma’s result does not contradict the designers’ 2−42 upper bound. Ohkuma

used a 20-round linear approximation to break 24-round of PRESENT.

Table 3.2 shows the number of linear characteristics activating one Sbox that exist within a

linear approximation with input and output masks of Hamming weight one. The table clearly

shows that the correlations of the linear approximations exceed the designers’ characteristic

bound for large number of rounds which might be the reason why the experiments performed

by the designers which were probably for small number of rounds have not shown the effect

of the linear hull which seems to appear for large number of rounds. As shown in Table 3.2,

when the number of rounds exceeds 11, the maximum squared average correlation of a linear

approximation with input and output masks of Hamming weight one in PRESENT is larger

than the maximum squared correlation of a linear characteristic.

Table 3.2: r ≡ Number of rounds, N ≡ number of linear trails, C2
1 ≡ maximum average

squared correlation of the linear approximation with input and output masks of Ham-
ming weight one in PRESENT and C2

2 ≡ maximum squared correlation possible for a
linear characteristic in PRESENT.

r log2(N) log2(C2
1) log2(C2

2)
4 1.58 -14.41 -12.00
. . . . . . . . . . . .
8 7.58 -24.42 -24.00
. . . . . . . . . . . .
11 7.58 -24.42 -24.00
12 18.73 -34.82 -36.00
. . . . . . . . . . . .
20 24.29 −55.71 -60.00
. . . . . . . . . . . .
23 28.45 -63.55 -68.00
24 29.84 -66.16 -72.00
. . . . . . . . . . . .
28 35.39 -76.61 -84.00

The multidimensional linear attack on PRESENT mounts a 25-round attack using a 23-

round distinguisher with multiple linear approximations activating one Sbox per round but

having input and output masks with Hamming weight more than or equal to one. A 26-round

attack was mounted using the whole code book using a 24-round distinguisher with multiple

linear approximations activating one Sbox per round but having input and output masks with

Hamming weight more than or equal to one.
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These linear attacks have influenced the design of SPONGENT since it uses the same but

extended bitwise permutation of PRESENT as its linear layer and the same criteria of the

PRESENT Sbox. Thus to avoid the threats of such attacks, the SPONGENT Sbox was

carefully chosen to avoid the existence of many linear characteristics with one active Sbox per

round as the case in PRESENT. Table 3.3 shows the existence of only 4 linear approximations

with input and output masks with nonzero correlation in SPONGENT compared to 8 in

PRESENT. This makes SPONGENT secure against linear attacks in fewer rounds compared

to PRESENT. For instance in SPONGENT-88, there is always only one trail that have one

active Sbox at each round when the number of rounds is larger than 5.

Table 3.3: Linear Approximation Table of the SPONGENT Sbox. The first column
holds the integer representation of the binary input masks while the first row holds
the integer representation of the binary output masks. The entry (i, j) divided by 16
represents the correlation of a linear approximation with input mask equal to the binary
representation of i and output mask equal to the binary representation of j. 1-bit to
1-bit masks are marked with boxes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 -4 4 4 -4 0 0 0 0 -4 4 -4 4 -8 -8

2 0 0 0 -8 0 0 0 -8 -4 -4 -4 4 4 4 4 -4
3 0 0 -4 -4 -4 4 8 0 4 4 0 0 0 8 -4 4

4 0 0 0 0 0 8 0 8 -4 -4 4 4 -4 4 4 -4
5 0 0 -4 4 -4 -4 8 0 -4 -4 0 -8 0 0 4 -4
6 0 0 -8 0 -8 0 0 0 0 0 0 8 0 -8 0 0
7 0 0 4 4 -4 -4 0 0 8 -8 4 4 4 4 0 0
8 0 0 0 0 0 0 0 0 0 8 8 0 8 0 0 -8
9 0 8 -4 -4 -4 -4 -8 0 0 0 4 -4 -4 4 0 0
10 0 0 0 -8 0 0 0 8 4 -4 -4 -4 4 -4 -4 -4
11 0 8 -4 4 4 4 0 0 -4 -4 0 0 8 0 -4 4
12 0 0 0 0 0 -8 0 8 -4 4 -4 4 4 4 4 4
13 0 -8 -4 -4 4 -4 0 0 -4 -4 8 0 0 0 -4 4
14 0 0 8 0 -8 0 0 0 -8 0 0 0 0 0 -8 0
15 0 8 4 -4 4 -4 8 0 0 0 4 4 -4 -4 0 0

In Chapter 4, we used the submatrix method to find better linear approximations in PRESENT

and SPONGENT than the previously found linear approximations.

3.3.2 Attacks on PRINTcipher

The block cipher PRINTcipher has been analyzed in several publications. Our work in

Chapter 5 presents the first analysis of PRINTcipher which basically showed how to avoid
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the key dependent layer of PRINTcipher to mount a differential attack on PRINTcipher.

All the subsequent attacks on PRINTcipher point to the existence of weak keys. Our work in

Chapter 6 introduces the Invariant Subspace Attack which can be seen as a partial fixed point

attack and applies it to PRINTcipher to distinguish the full round PRINTcipher for two

classes of keys, each class contains 2−29 fraction of all the keys, we call these keys “weak keys”.

Both of these attacks exploits the difference properties of the 3-bit Sbox used in PRINTci-

pher. In the following, we show the difference distribution table of the PRINTcipher Sbox.

Table 3.4: Difference distribution table for PRINTcipher Sbox. Note that the differ-
ence table is symmetric. 1-bit to 1-bit differences are marked with boxes. Each entry
divided by 8 gives the corresponding difference probability.

∆y
000 001 010 011 100 101 110 111

000 8 0 0 0 0 0 0 0

001 0 2 0 2 0 2 0 2

010 0 0 2 2 0 0 2 2
011 0 2 2 0 0 2 2 0∆x
100 0 0 0 0 2 2 2 2
101 0 2 0 2 2 0 2 0
110 0 0 2 2 2 2 0 0
111 0 2 2 0 2 0 0 2

As mentioned in Chapter 6, a one bit difference in the input of the Sbox causes a one bit

difference in the output difference with probability 2
8 . This allows the existence of some

specified 1-bit input difference and 1-bit output difference with probability 1 such as those

defined in Table 6.1. Since 1-bit input difference and 1-bit output difference with nonzero

probability cannot be avoided in an optimal 3-bit Sbox [77], similar properties as the one

showed in Table 6.1 would exist for any optimal 3-bit Sbox.

More recently, the work in [30] found all the classes of weak keys for both PRINTcipher-

48 and PRINTcipher-96. More specifically, 64 classes of weak keys have been found for

PRINTcipher-48 including the two classes mentioned in Chapter 6 and 115,669 classes of

weak keys have been found for PRINTcipher-96 including the two classes mentioned in

Chapter 6. However, for PRINTcipher-48 the two classes mentioned in Chapter 6 contain

the largest number of weak keys which is 251. It is also noted in [30], that these two specific

classes are not disjoint and contain 245 joint elements. In general, the classes of weak keys

found might have a non-trivial intersection.
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Two methods were proposed in [30] to find all the classes of weak keys in PRINTcipher.

The first method is based on a one-to-one correspondence between invariant subspaces in

PRINTcipher-n and subsets in Zn satisfying certain properties (refer to [30] for more de-

tails). It finds invariant subspaces in PRINTcipher-48 by finding subsets in Z48 that satisfies

certain properties. The method goes through all the possible permutation keys, that allow

the existence of invariant subspaces, which are 228 (out of 232 but 4 bits get affected by the

round constants (See Chapter 6)). After finding the permutation keys that have invariant

subspaces, the xor key is found. This method was able to find all the 64 classes of weak keys

existing in PRINTcipher-48. However, for PRINTcipher-96 this method is infeasible since

it exhaustively tries all the possible permutation keys, that allows the existence of invariant

subspaces, which are 260 (out of 264). Therefore, the second method was proposed. It is based

on a one-to-one correspondence between PRINTcipher-n and points of a certain polytope in

Zn. These points and thus the invariant subspaces in PRINTcipher are then found efficiently

using Mixed Integer Linear Programming. For more details, we refer the reader to [30].

The work in [72] combines differential and linear attacks. More specifically, linear approxima-

tions were used to increase the probability of differential characteristics in order to break 29

rounds and 31 rounds of PRINTcipher-48 for 4.54% and 0.036% of the keys, respectively.

In [6], linear attacks that break 28 rounds and 29 rounds of PRINTcipher-48 for 50% and

3.125% of the key space respectively were proposed.

3.3.3 Attacks on A2U2

In [36], a very efficient chosen plaintext attack against A2U2 is proposed. However, as we

are going to show here, the attack contains a flaw that makes it unapplicable against the real

A2U2 cipher.

Attack Idea: If the attacker could freely choose one plaintext bit for each clock, then he

can write the output equation as follows:

Yt = MUXAt(Bt + Ct, Bt + pt)

= MUXAt(Ct, pt) +Bt.

Depending on the amount of knowledge the attacker has about the plaintext, he can now learn

more about the inner state.

If the attacker can choose the plaintext, he can start by encrypting a plaintext that is identical
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to the counter sequence. In this case, the above equation simplifies to

Yt = MUXAt(Ct, pt) +Bt

= pt +Bt,

meaning that the attacker can learn the whole sequence (Bt)t≥0.

Next, he encrypts a plaintext that is the bitwise inverse of the counter sequence. This allows

him to distinguish for every ciphertext bit whether Ct or pt was encrypted, providing the

attacker with the full sequence (At)t≥0.

Now he has the sequences produced by the LFSR and by both NFSRs. All that remains is to

test for each round which key bit gives the correct NFSR update. This can be done in unit

time, yielding an extremely efficient attack.

The Catch: However, the initial assumption of the above attack is wrong, invalidating the

whole cryptanalysis. The problem is that plaintext is not used at a rate of 1 bit per round.

It is not possible to choose a plaintext bit for each round, because (1) some plaintext bits are

used in several rounds and (2) without knowledge of the sequence (At)t≥0, it is impossible to

say in which rounds a plaintext bit will be used. However, as it turns out, this attack can be

repaired. In Chapter 7, we show how to repair this attack besides providing other attacks.

Since the first version of this paper, this problem was acknowledged by Chai et al., and their

paper was updated accordingly3. Their new attack recovers first the sequence (At)t≥0 by choos-

ing two complementary plaintexts (pt and its complement p̄t) and xoring their corresponding

ciphertexts (c ⊕ c̄ = ∆c). Now, if ∆ct = 0 then At = 0, otherwise At = 1. This recovers the

sequence (At)t≥0 and consequently the sequence (Bt)t≥0 can then be simply recovered.

More recently, the work in [111] improved the guess-and-determine known plaintext attack in

Chapter 7. The main idea of [111] is in forming the recurrence relation

σ(i) = σ(i+ 1)−Ai and 0 ≤ σ(i) ≤ i

where 0 ≤ i ≤ n and n is the number of the ciphertext bits. The authors of [111] reduced

the computational time for determining registers A and B by guessing σ(n) (which is ≤ n

3A word on the chronological ordering of things seems to be in order here. The original Chai attack
was published on IACR Eprint May 17, 2011. Our attack proposed in Chapter 7 was submitted to
Eprint May 25, 2011. On the same day, a copy was sent to Chai et al., informing them about a possible
flaw in their attack and proposing the attack described below. On May 26, 2011, Chai et al. updated
their Eprint paper by removing the flaw and proposing a new attack similar (but not identical) to the
one the we submitted the day before.

52



and thus a small number) in addition to guessing register A and then determining previous

states of registers A and B. The paper also shows by experiments that the quadratic equation

system obtained after determining the subkeys can easily be solved and most of the time there

is always a one key candidate. All these takes time complexity in the order of 224.7.
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Chapter 4

Differential and Linear
Approximations on PRESENT-Like
Ciphers

The lightweight block cipher PRESENT described in Chapter 3 (See Section 3.1.1) has re-

ceived a lot of attention from the cryptographic community and it has been recently adopted

by ISO as one of the international standards in lightweight cryptography [67]. PRESENT

has inspired some lightweight designs, namely, the block cipher Maya [52], the involution block

cipher PUFFIN [37]1, the block cipher PRINTcipher (See Chapter 3) and the core permu-

tation of the hash function SPONGENT (See Chapter 3). All these designs can be seen as

PRESENT-like ciphers (which is a definition we borrowed from [27]) as their algorithms are

very similar to the Algorithm of PRESENT (See Algorithm 4).

In this chapter we show how to find good differential and linear approximations on PRESENT-

like ciphers. We also study the effect of key scheduling on the distribution of differential and

linear approximations over all the key space.

In the first section, we present an approach to find low-weight differential and linear approxi-

mations on PRESENT-like ciphers and then apply it on PRESENT and SPONGENT. In

the second section, we study the effect of key scheduling on the distribution of differential and

linear approximations on PRESENT-like ciphers. In the final section, we conclude and give

some suggestions for future work.

1Note that both Maya and PUFFIN were completely broken using both differential and linear
cryptanalysis in [27,28] and [20,82] respectively. Therefore we do not consider them here.
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4.1 Estimating the Probabilities of Low-Weight Dif-

ferential and Linear Approximations

We estimate the probability of low-weight linear and differential approximations in PRESENT-

like ciphers. By using large but sparse correlation and difference submatrices, we overcome the

memory and time problems that appears in the branch and bound method [87] described in

Algorithm 2.3 when the number of good linear and differential trails grows exponentially. For

instance, there would be memory and time problems in the branch and bound method when

the number of differential and linear trails grows exponentially but using sparse correlation and

difference submatrices we can handle any number of trails and investigate many differential

and linear approximations with a negligible cost. For instance, all the linear approximations

of PRESENT at Table 4.2 come from a number of good and bad trails exceeding 289 which

clearly shows a convincing advantage of using sparse submatrices over the branch and bound

algorithm when the number of trails grows exponentially.

Using sparse correlation and difference submatrices of PRESENT and SPONGENT:

1. We report the first improved analysis on SPONGENT [22], specifically we improve the

linear cryptanalysis on the SPONGENT permutation presented by the designers by

one more round.

2. We present better linear approximations on PRESENT and present a 24-round statis-

tical saturation distinguisher that uses better input and output subspaces compared to

the original attack paper [39]. These approximations also show that the assumption,

made by all the previous analyses on PRESENT [38, 82, 93], that the linear approxi-

mations consisting of trails with one active Sbox at each round, yield the highest bias is

not valid. We also found many 16-round differential approximations activating at most

4 Sboxes per round with probability larger than 2−64, which could be used to mount a

differential attack on 18-round PRESENT similar to the ones in [18,109].

4.1.1 Description of Our Estimation Approach

Assuming that PRESENT-like ciphers are Markov ciphers [81,91], we make use of submatrices

of the correlation and the transition probability matrices of the target ciphers to find the best

linear and differential approximations. We focus only on describing how to find better linear

approximations. The case for finding better differentials is similar (use transition probability
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submatrix instead of correlation submatrix and input-output difference instead of input-output

masks).

Large Sparse Correlation and Difference Matrices

In [21, 22], a submatrix of the correlation matrix of size 4ns × 4ns was used to estimate the

correlation of a linear approximation, where ns is the number of the 4-bit Sboxes used in the

permutation where only input and output masks of Hamming weight one are considered. We

extend this approach by adding input and output masks with Hamming weight ≤ 4. This

results in having a large correlation submatrix whose entries activate at most 4 active Sboxes.

Suppose that we use a correlation submatrix with input and output masks with Hamming

weight less than or equal to m. Then the size of the submatrix will be
∑m
i=1

(n
i

)
×
∑m
i=1

(n
i

)
,

where n is the block size of the cipher in bits. The submatrix size is large but most of its entries

are zeros. For instance, we see that for any input element activating ‘s’ Sboxes (1 ≤ s ≤ m),

all the other output elements corresponding to the other Sboxes yield a zero correlation. Thus,

there are more than
m∑
i=1

(
n

i

)
− 15s

zero output elements for any input activating ‘s’ Sboxes. Thus, this submatrix has few non

zero elements and therefore it can easily fit in memory using a sparse matrix storage format

(See Section 4.2).

The construction of the correlation submatrix is straightforward. For instance to fill the

submatrix entries from an input with Hamming weight 5, we proceed as follows: for each

possible input, we determine the number of activated Sboxes which is in this case at least

2. Suppose we have i active Sboxes, then all the possible ordered solutions of the inequality

x1 +x2 + · · ·+xi ≤ m determine the Hamming weight of the output bits of each of the i active

Sboxes. Then we fill the submatrix entries corresponding to the specified input by considering

all the possible output bits of the specified Hamming weight. To estimate the cost of filling

these entries, we consider the simple case where we have two active Sboxes. The time cost for

filling the corresponding submatrix entries is

∑
2≤i+j≤5

(
4
i

)(
4
j

)

and the number of all the possible inputs with Hamming weight 5 activating 2 Sboxes is

N2 =
∑

w1+w2=5

(
n
4
2

)(
4
w1

)(
4
w2

)
.
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Now by symmetry, the cost of filling the corresponding entries that have outputs with Hamming

weight 5 activating 2 Sboxes is similar but we only exclude the duplicated cases where i+j = 5,

so the cost is
∑

2≤i+j<5
(4
i

)(4
j

)
. Therefore, the total construction time of input and output with

Hamming weight 5 activating 2 Sboxes is

2N2
∑

2≤i+j≤5

(
4
i

)(
4
j

)
−N2

∑
i+j=5

(
4
i

)(
4
j

)
.

One can see that the construction time can be generalized as follows.

Proposition 4.1.1. The time cost for computing the correlations corresponding to inputs and

outputs of Hamming weight ‘w’, 1 ≤ w ≤ m is in the order of:

2(N1
∑

1≤i≤w
(4
i

)
+N2

∑
2≤i+j≤w

(4
i

)(4
j

)
+ · · ·+Nw−1

∑
w−1≤i+···+z≤w

(4
i

)
· · ·
(4
z

)
)

+ Nw4w − N2
∑
i+j=w

(4
i

)(4
j

)
− · · · − Nw−1

∑
i+···+z=w

(4
i

)
· · ·
(4
z

)
, where N1 + · · · + Nw =

(n
w

)
and Ni =

∑
w1+···+wi=w

(n
4
i

)( 4
w1

)
· · ·
( 4
wi

)
is the number of elements with Hamming weight ‘w’

activating ‘i’ number of Sboxes.

Note that N1 = 0 when w ≥ 5 as in this case we have at least two active Sboxes. The total

construction time is in the order of the sum of construction times of all the possible input and

output weights (w), i.e. 1 ≤ w ≤ m, where the dominant term is when w = m.

After constructing the correlation submatrix, C. The correlation approximations after r rounds

is computed by Cr =
∏r
i=1Mi, where Mi is the correlation submatrix at round i formed by

changing the signs of C according to the round key and the round constant used in the cipher.

The maximum correlation after r rounds is thus given by crmax := max |Crij |. This works in the

case of SPONGENT since we know that it uses an almost zero key at each round and thus we

can compute the actual correlation of each approximation but in the case of PRESENT, we

need to compute the average squared correlation of a linear approximation (See Proposition

4.2.2) in order to compute the capacity of the statistical saturation attack.

As the size of the correlation submatrix gets bigger when considering masks with Hamming

weight equal to 4, the matrix-matrix multiplications might not be always possible for high

number of rounds especially when there are many trails for most of the approximations as these

make the resulted submatrix Cr very dense and consequently we might run out of memory.

Thus, instead we use successive matrix-vector multiplications as described by Algorithm 5.

Note that before Step 3 in Algorithm 5 when we are computing the maximum absolute cor-

relation (for example in SPONGENT), we have to change the signs at some entries of the

correlation submatrix M at each round according to the corresponding round constant. The

time complexity of Algorithm 5 is in the order of l × (r − 1) matrix-vector multiplications

where l is the number of rows or columns of the submatrix. If l is a large number, then the
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Algorithm 5 Finding the best the average squared correlation (absolute correlation)

Require: Submatrix M of size l×l, M is a submatrix of the average squared correlation
matrix (or the correlation matrix).

Require: Two temporary vectors of length “l”, tempCorr and tempIndex.
Ensure: Finds the best r-round average squared correlation (absolute correlation) with

its corresponding input mask a and output mask b.
1: counter = 0.
2: for j = 1→ l do
3: Extract the jth Column Cj from M .
4: repeat
5: Cj = M × Cj.
6: Increment counter
7: until counter equals r − 1.
8: tempCorr(j) = max(|Cj|).
9: tempIndex(j) = The index of max(|Cj|) (which gives us the corresponding input

mask).
10: end for
11: return max(tempCorr) which yields the maximum average squared correlation

(absolute correlation) and its index yields the corresponding output mask b. Then
the corresponding input mask a = max(tempIndex(b)).

most convenient way is to consider correlation matrices with Hamming weight up to 2 or 3

bits depending on the size of the block cipher. Then, try to perform matrix-matrix multiplica-

tions and find the active input and output Sboxes that yield the maximum absolute value as

they would probably be the Sboxes that yield the maximum value when considering matrices

using Hamming weight more than 3. For example, experiments on the PRESENT correla-

tion submatrix with Hamming weight up to 3, where we are able to perform matrix-matrix

multiplication and thus determine the correlations of all the approximations, showed us that

the best linear approximations often come from an input mask activating only one Sbox and

also an output mask activating only one Sbox (which get permuted afterwards).

4.1.2 Improved Linear and Differential Approximations

We use the approach described in section 4.1.1 and report the best linear and differential

approximations we found in PRESENT and SPONGENT. We use the time complexity

formula, given at section 4.1.1, to specify the set of parameters (n ≡ block size and m ≡
maximum Hamming weight), where constructing the sparse matrices would be computationally

tractable in PRESENT and SPONGENT.

As shown in Table 4.1, the number of elements in the correlation and differences submatrices
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Table 4.1: n ≡ Cipher’s block size, m ≡ maximum Hamming weight of inputs and
outputs, size ≡ matrix size, nnzC ≡ non zero elements of the Correlation matrix,
nnzD ≡ non zero elements of the difference matrix, Time complexity of the correlation
or difference matrix construction ≡ O(t), − ≡ bounded by t since each step in t fills
an entry in the correlation or difference matrix. The time complexity unit is simple
arithmetic operations.

Cipher n m log2(size) log2(nnzC) log2(nnzD) log2(t)
PRESENT 64 4 19.37× 19.37 23.26 18.41 27.83
PRESENT 64 5 22.99× 22.99 - - 33.85
PRESENT 64 6 26.31× 26.31 - - 39.61
PRESENT 64 7 29.39× 29.39 - - 45.33
SPONGENT 88 4 21.22× 21.22 23.63 19.18 29.58
SPONGENT 88 5 25.31× 25.31 - - 36.04
SPONGENT 88 6 29.12× 29.12 - - 42.26
SPONGENT 136 4 23.74× 23.74 - - 32.00
SPONGENT 136 5 28.48× 28.48 - - 39.02

of both PRESENT and SPONGENT is huge. A standard matrix representation would cost

241.74 and 245.44 bytes for the difference matrix of PRESENT and SPONGENT respectively.

This is more than 1 TB. Therefore, we need to avoid running out of memory by using a

sparse matrix representation which reduces memory by only allocating space for the nonzero

elements. This will also speed the matrix-vector or matrix-matrix multiplications which we

perform to find the best linear and difference approximations.

Table 4.1 shows us that our submatrices are very sparse, for instance the first table entry

indicates that the density (= nnz
Size×Size) of the difference transition submatrix of PRESENT

with input and output differences of Hamming weight up to 4 is 7.56 × 10−7. This confirms

that these large submatrices are considerably sparse. Therefore, using a sparse matrix storage

format where we only allocate storage for the nonzero elements, our large correlation submatrix

could easily fit in memory. The very general and simple format for storing sparse matrices

is called Compressed Column Storage (CCS). Using this format, the storage cost of a sparse

matrix depends on the number of its nonzero elements (nnz) and its column size (ncol). More

specifically, the cost of a real-valued sparse matrix in CCS format is equivalent to the cost

of nnz real-valued numbers and (nnz + ncol + 1) integers [102]. Thus, on a 64-bit machine,

where we have 8 bytes for both real and integer numbers, the total memory cost would be

8nnz+8(nnz+ncol+1) bytes. Using the numbers on Table 4.1, we see that the total memory

cost for a CCS sparse representation of PRESENT and SPONGENT difference submatrices

is 11014024 (≈ 223.4) and 29085768 (≈ 224.8) bytes respectively. Also the memory cost for a

CCS representation of PRESENT and SPONGENT correlation submatrices is 165990920
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(≈ 227.3) and 226974888 (≈ 227.8) bytes respectively. Each of these submatrices costs less than

1 GB and thus would easily fit in memory.

Application on PRESENT:

We use the approach described above to find better differential and linear approximations.

Differential Approximations: We use a difference transition submatrix whose input

and output differences have Hamming weight less than or equal to four. Now, in order to

estimate the differential probability after r rounds, we raise our transition submatrix to r and

extract the maximum entry. The time and memory costs of this are negligible. We found that

the 2-round iterative characteristic in [23] has probability 2−74 for 15-round PRESENT but

the differential containing this characteristic has a higher probability equivalent to 2−63.50 for

a 15-round PRESENT. We also found many differentials with probability larger than 2−64

for 16 rounds PRESENT where the maximum one occurs with probability 2−62.58.

Moreover, the maximum differential probability we found for 25 rounds is equal to 2−97.38.

This is larger than the 2−100 differential characteristic bound for 25 rounds given in [23].

Here we note that the analysis provided in [23] is sound as the authors gave a bound for the

differential characteristic and not for the differential which is hard to bound. Nevertheless,

this shows that our approach can be useful in bounding the probability of a differential.

Linear Approximations and Statistical Saturation Attacks: All the previous

linear attacks on PRESENT used linear trails activating only one Sbox at each round. To

find better linear approximations, we considered trails activating at most 4 Sboxes. Thus, we

constructed a correlation submatrix using input and output masks of Hamming weight at most

4 bits. By searching for the best approximations among input masks and output masks in one

Sbox. We found that there are many approximations whose squared correlation is larger than

2−64 when ≤ 24 rounds of PRESENT are used.

As noted in [93], these approximations follow the normal distribution with mean zero and

variance equal to their squared correlation. Thus, the squared correlation is higher for 32% of

keys compared to the whole key space for some approximations where each approximation has

a different path. Thus when using multiple linear approximations, each key is more likely to

yield a high correlation with respect to some input and output masks [64]. Therefore statistical

saturation distinguishers based on linear approximations whose squared correlations are larger

than 2−64 work exactly as predicted for almost all the keys.
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Table 4.2 lists the 10 approximations spanned from U11 and V1 and also the 10 approximations

spanned from U11 and V3. All these approximations have a squared correlation larger than

2−64 and they give us two 24-round statistical saturation distinguishers. Using the input

subspace

U11 = span{e41, e42, e43, e44}

which corresponds to fixing the 4 bits entering the 11-th Sbox (counting from left to right)

and the output subspace

V1 = span{e1, e17, e33, e49}

which corresponds to the 4 bits resulted after applying the permutation on the output of the

first Sbox, we get a statistical saturation distinguisher on 24 rounds with an average capacity

equal to 2−60.53. Using the same input subspace with another different output subspace

V3 = span{e3, e19, e35, e51}.

We also get a statistical saturation distinguisher with an average capacity 2−60.53. Using

another input subspace

U10 = {e37, e38, e39, e40}

with each of the above two output subspaces we get distinguishers with the same capacities.

Now all these 24-round statistical saturation distinguishers can be used to mount a key recovery

attack for 16 bits of the last round key on 25 rounds of PRESENT using the whole code book.

However, using a 23-round distinguisher a key recovery attack on 25 rounds similar to the one

in [38] could be mounted using less than the code book.

Moreover, these 24-round distinguishers could be used to mount a 26-round key recovery attack

similar to [38] to recover 16 bits from the 1st round subkey (4 bits from each of the 9th, 10th,

11th and 12th Sbox) and also 16 bits from last round subkey (4 bits from each of the 1st,

5th, 9th and 13th Sbox) but still estimating the success probability and data complexity is

difficult. However, the statistical framework developed in [63] in order to estimate the success

probability and data complexity of the multidimensional attack could also be used to estimate

the success probability and data complexity of this attack, should we assume the independence

of the linear approximations used which is not true. This is in fact what has been done in [38] as

it has been noted in [64] that the linear approximations used in the 26-round multidimensional

attack of PRESENT can not be statistically independent as several approximations share the

same input mask.

Therefore, rather than giving the success probability and data complexity, we list in Table

4.3 the estimated squared Euclidean distance of the statistical saturation distinguisher with

input subspace U11 and output subspace V1 for various number of rounds along with the
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experimental Euclidean distance using 100 random master keys. We also list the Euclidean

distance obtained via a wrong key guess which was simulated by encrypting one more round

under the right key. Table 4.3 clearly shows that the experimental Euclidean distances are

close to the estimated capacities and the more plaintext we use the closer our experimental

distances get to the expected distances. Thus, using the above mentioned four statistical

distinguishers we could find 16 key bits from each of the first and last round keys using the

whole code book. We note that these statistical saturation distinguishers are better than the

distinguisher reported in the original attack [39] whose input and output subspaces are

U = V = span{e22, e23, e26, e27, e38, e39, e42, e43}.

This is because all the linear approximations spanned from U and V do not have a single

linear approximation with a squared correlation larger than 2−64 even when considering input

and output masks with Hamming weight at most 4 bits.

Application on SPONGENT:

Here we find linear approximations that can be used to distinguish 23 rounds of the SPONGENT-

88 permutation using the whole code book and this is one more round than what has been

provided in [22]. We also give the maximum differential characteristic probability we found

on 16-round SPONGENT-88.

Differential Approximations: We constructed a difference transition submatrix for

SPONGENT-88 with input and output differences having Hamming weight at most 4 bits.

The maximum differential probability obtained by powering the transition submatrix2 is a 16-

round differential and it has probability 2−77.83. One of the differentials having this probability

is

e1 ⊕ e4 ⊕ e17 ⊕ e20 → e9 ⊕ e33 ⊕ e75 ⊕ e77

and it consists of only one differential trail. This is one round less than the best differential

provided by the designers as their differential include characteristics with differences having

Hamming weight more than 4. It would be interesting to see whether input and output differ-

ences with Hamming weight at most 5 bits would yield better estimations. However, as noted

in Table 4.1 the time complexity is 236 arithmetic operations which have not tried due to the

2This is possible for the difference submatrices of PRESENT and SPONGENT but not for
their correlation matrices as they are dense
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Table 4.2: α ≡ input mask, β ≡ output mask, (C≤4(α, β))2 ≡ squared correlation of a 24-round
PRESENT linear approximation with input mask α and output mask β computed via a correlation
submatrix with Hamming weight at most 4. The first 10 approximations correspond to the output
subspace V1 while the second 10 approximations correspond to the output subspace V3. ei ≡ the unit
vector with single 1 at position i whose length is 64 (PRESENT’s block size). The values between
parentheses represent the log2 of the corresponding number of trails which are easily calculated by
replacing each nonzero entry with 1 in the correlation submatrix and then powering it to r

α β log2((C≤4(α, β))2)
e41 ⊕ e43 e1 ⊕ e17 ⊕ e33 -63.98 (91.67)
e41 ⊕ e43 e1 ⊕ e33 ⊕ e49 -63.77 (90.62)
e41 ⊕ e43 e1 ⊕ e17 ⊕ e33 + e49 -63.97 (91.48)

e41 ⊕ e42 ⊕ e43 e1 ⊕ e17 ⊕ e33 -63.80 (91.00)
e41 ⊕ e42 ⊕ e43 e1 ⊕ e17 ⊕ e49 -63.97 (91.12)
e41 ⊕ e42 ⊕ e44 e1 ⊕ e17 ⊕ e33 -63.97 (91.52)
e41 ⊕ e42 ⊕ e43 e1 ⊕ e33 ⊕ e49 -63.60 (89.95)
e41 ⊕ e42 ⊕ e44 e1 ⊕ e33 ⊕ e49 -63.77 (90.47)
e41 ⊕ e42 ⊕ e43 e1 ⊕ e17 ⊕ e33 ⊕ e49 -63.80 (91.48)
e41 ⊕ e42 ⊕ e44 e1 ⊕ e17 ⊕ e33 ⊕ e49 -63.96 (91.33)

e41 ⊕ e43 e3 ⊕ e19 ⊕ e35 -63.98 (91.66)
e41 ⊕ e43 e3 ⊕ e35 ⊕ e51 -63.78 (90.62)
e41 ⊕ e43 e3 ⊕ e19 ⊕ e35 ⊕ e51 -63.97 (91.48)

e41 ⊕ e42 ⊕ e43 e3 ⊕ e19 ⊕ e35 -63.81 (91.00)
e41 ⊕ e42 ⊕ e43 e3 ⊕ e19 ⊕ e51 -63.97 (91.11)
e41 ⊕ e42 ⊕ e44 e3 ⊕ e19 ⊕ e35 -63.97 (91.51)
e41 ⊕ e42 ⊕ e43 e3 ⊕ e35 ⊕ e51 -63.60 (89.95)
e41 ⊕ e42 ⊕ e44 e3 ⊕ e35 ⊕ e51 -63.77 (90.47)
e41 ⊕ e42 ⊕ e43 e3 ⊕ e19 ⊕ e35 ⊕ e51 -63.80 (90.81)
e41 ⊕ e42 ⊕ e44 e3 ⊕ e19 ⊕ e35 ⊕ e51 -63.97 (91.33)

lack of computing resources.

Linear Approximations: As mentioned in Chapter 3 (See Section 3.3.1), the SPON-

GENT Sbox was chosen carefully to avoid the many linear trails with one active Sbox in each

round existing on PRESENT. Here we use a correlation submatrix with input and output

masks of Hamming weight up to 4 to activate at most 4 Sboxes. As a result, we found many

linear approximations with correlations larger than 2−44 for 23-round of SPONGENT-88.

Thus, we improved the linear distinguishers provided by the designers one more round. Table

4.4 shows that correlations obtained from using correlation matrices with masks of Hamming

weight at most 2 bits, 3 bits and 4 bits do not vary significantly and this might indicate that lin-

ear characteristics covering more than 4 active Sboxes per round do not have a significant effect
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Table 4.3: The table shows the estimated Euclidean distance D together with the ex-
perimental Euclidean distance D′ averaged over 100 random keys with various amount
of plaintexts, namely 210 plaintexts are used for r = 2, 3, 212 for r = 4, 217 for r = 5, 6,
and 220 for r = 7, 8. D′∗ ≡ the Euclidean distance for a wrong key guess (this was
simulated by encrypting one more round under the same plaintexts and key guess used
in evaluating D′). We note that log2(D) = −∞ at r = 2 is a 2-round zero-correlation
distinguisher [25] in PRESENT. We note that Zero-correlation distinguishers can easily
be constructed in PRESENT for not more than 3 rounds since PRESENT achieves
full-dependency after exactly 3 rounds.

r 2 3 4 5 6 7 8 23 24

log2(D) −∞ -8.00 -9.99 -12.81 -15.23 -17.79 -20.37 -55.52 -64.53
log2(D′) -10.07 -7.70 -9.67 -12.74 -14.32 -17.09 -19.06 - -
log2(D′∗) -7.69 -9.03 -11.38 -14.34 -16.19 -19.49 -19.92 - -

in the total correlation. The table also shows that it is difficult to accurately estimate the total

correlation of some linear approximations. For instance for 22 rounds, |C≤2(e70⊕e71, e56⊕e78)|
is smaller than |C≤3(e70⊕ e71, e56⊕ e78)| but bigger than |C≤4(e70⊕ e71, e56⊕ e78)|. This sug-

gests that the characteristics with Hamming weight 4 bits contributed negatively to the total

correlation.

Since our results distinguish only 23 out of 45 rounds, they confirm that the SPONGENT

Sbox was a good choice. As SPONGENT use the same but a wider bitwise permutation

of PRESENT, we used a variant of PRESENT with the SPONGENT Sbox to check its

resistance against linear attacks. We found that there are no trails with one active Sbox at

each round when the number of rounds is larger than 6. Moreover, using submatrices with

entries that have Hamming weight at most 4, we found that the maximum average squared

correlation for 20 rounds is only 2−74.48. This 20-round average sqaured correlation is very low

compared to the best average squared correlations in 24 rounds of PRESENT shown in Table

4.2. All these give us further confirmation that the SPONGENT Sbox was a good choice.

4.2 The Effect of Key Scheduling on Differential and

Linear Approximations on PRESENT-Like Ci-

phers

In [45], Daemen and Rijmen provided a through study about the probability distributions

of differential and linear approximations in block ciphers in general and especially for the

so-called key alternating ciphers. Since PRESENT-like ciphers are key alternating ciphers,
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Table 4.4: r ≡ number of rounds, α ≡ input mask, β ≡ output mask, |C≤i| ≡ correlation
using a submatrix with input mask α and output mask β having Hamming weight at most i
bits, − ≡ not applicable. ei ≡ the unit vector with single 1 at position i whose length is 88
(SPONGENT-88’s block size).

r α β log2(|C≤2)|) log2(|C≤3|) log2(|C≤4|)
22 e6 ⊕ e7 e3 ⊕ e25 ⊕ e47 - -43.82 -43.83
23 e6 ⊕ e7 e3 ⊕ e25 ⊕ e47 - -43.81 -43.74
22 e6 ⊕ e7 e3 ⊕ e25 ⊕ e47 ⊕ e69 - - -43.83
23 e6 ⊕ e7 e3 ⊕ e25 ⊕ e47 ⊕ e69 - - -43.75
22 e70 ⊕ e71 e7 ⊕ e51 -42.06 -42.05 -42.05
23 e70 ⊕ e71 e7 ⊕ e51 -44.02 -44.01 -43.95
22 e70 ⊕ e71 e56 ⊕ e78 -42.03 -42.03 -42.04
23 e70 ⊕ e71 e56 ⊕ e78 -43.99 -43.99 -43.96
22 e70 ⊕ e71 e7 ⊕ e29 ⊕ e51 ⊕ e73 - - -42.04
23 e70 ⊕ e71 e7 ⊕ e29 ⊕ e51 ⊕ e73 - - -43.94
22 e9 ⊕ e10 ⊕ e11 e3 ⊕ e25 ⊕ e47 - -43.99 -43.93
23 e9 ⊕ e10 ⊕ e11 e3 ⊕ e25 ⊕ e47 - -43.97 -43.88
22 e46 ⊕ e47 ⊕ e48 e34 ⊕ e56 ⊕ e78 - -42.72 -42.69
23 e46 ⊕ e47 ⊕ e48 e34 ⊕ e56 ⊕ e78 - -43.95 -43.89

then it is expected that the distribution of differential and linear approximations will be as

described in [45].

However, in the following we consider the behaviour of two ciphers that use identical round

keys, namely PRINTcipher and a variant of PRESENT with identical round keys. Their

behaviour is questionable since their round keys are identical and thus not independent. More

specifically, we study the distribution of differential approximations in PRINTcipher and

this was mainly motivated by the differential attack given in Chapter 5. We also study the

distribution of linear approximations in PRESENT with identical round keys to see the effect

of key scheduling on the distribution of linear approximations in PRESENT.

Distribution of Differential Approximations

We are interested on the distribution of the number of right pairs of a differential approximation

over all the keys. Firstly, we re-write the hypothesis of stochastic equivalence mentioned in

Chapter 3 as follows: Let pk be the probability of the differential when the secret key k is

used. Then the average probability over all the key space is p̃ = 1
|K|
∑
k pk. Now the hypothesis

of stochastic equivalence suggests that pk ≈ p̃ [7]. Secondly, We recall the result of [45] about

the distribution of the right pairs following a differential.
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Proposition 4.2.1. [45]

In an n-bit key alternating cipher, the number of the right pairs X following a differential with

probability p is a random variable that follows the Binomial distribution B(2n−1, 2n−1p) and

also the Poisson distribution (since p is small) with mean λ = 2n−1p:

Pr(X = i) ≈
(

2n−1

i

)
pi(1− p)2n−1−i ≈ e−λλi

i!

Experiments in [17] showed that the behaviour of differential approximations for a small variant

of PRESENT follows the binomial distribution and they further showed that there is no

significant difference between the expected probability and the mean averaged over all the

keys. Thus indicating that small variants of PRESENT and probably most PRESENT-like

ciphers satisfy the hypothesis of stochastic equivalence. Furthermore, recently experiments

in [7] also confirmed this behaviour.

However, in PRINTcipher the distribution might be different since the probability of a differ-

ential characteristic is based on the assumption of independent round keys and PRINTcipher

uses identical round keys. Therefore, we ran some tests to see if the theoretical probability
(

1
4

)r
of an input difference characteristic with Hamming weight one yielding an output difference

characteristic with Hamming weight one is actually met (See Chapter 5). Our experimental

data depicted in Figure 4.1 suggests that indeed the probability is slightly higher than ex-

pected which is due to the effect of intermediate characteristic values with Hamming weight

more than one which all add to the differential probability of input and output differences

with Hamming weight one.

Fig. 4.1: Experimental vs. theoretical estimates for the optimal differentials. The x-axis
shows the number of pairs yielding the correct output difference within 22r+4 tries. The
y-axis shows the relative frequency.

(a) 9 rounds (b) 10 rounds (c) 11 rounds (d) 12 rounds
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Linear Approximations’ Correlation Distribution

Assuming independent round-keys, we can compute the average and variance of the correlation

distribution of a linear approximation over all the keys. As the average of a sum of random

variables is the sum of the averages, the average bias is zero. Here, independent round-keys are

used to ensure that each single trail has average zero. Moreover, one can see that two distinct

linear trails Ci and Cj are pairwise independent. As the expected value of the correlation

distribution is zero, the variance of the distribution equals the average squared correlation

which equals the sum of the squares of the correlations of all trails (cf. Theorem 21 in [45]).

We summarize this in the following proposition.

Proposition 4.2.2. Let F = Fr ◦ · · · ◦ F2 ◦ F1 be an r-round block cipher with independent

round-keys, the average correlation is zero, i.e.,

E(C) = 0.

Moreover, the average squared correlation is given by

E(C2) =
∑
i

Πr
j=1cFj (α(j−1)i, αji)2.

PRESENT with Independent Round-keys

As mentioned before in Chapter 3, it was experimentally confirmed in [93] that the distribution

of the correlation of some linear approximations activating one Sbox per round nicely follows

a normal-distribution with mean zero and variance 2(−2r)2
N (this can be shown using the

above proposition), where N is the number of the linear trails with input and output masks of

Hamming weight one and only one active Sbox per round. Thus, experimentally, we can notice

two facts: Firstly, for PRESENT different trails behave like independent random variables

and secondly, the contribution of the non-optimal trails (those activating more than one Sbox

at some rounds) does not significantly influence the distribution of approximations with input

and output masks with Hamming weight one. For instance, for 20-round PRESENT using

e43 as an input mask and e43 as an output mask and activating only one Sbox per round, the

average squared correlation for the linear approximation (e43, e43) is 2−55.71. Now activating at

most 4 Sboxes per round, we see no significant improvement as the average squared correlation

for the linear approximation (e43, e43) is 2−55.59.
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PRESENT with Identical Round-keys

Let us consider a variant of PRESENT with identical round-keys (and round-constants to

avoid trivial slide attacks [16] described in Chapter 2). As it turns out this is an intriguing

example of the influence of the key-scheduling on the distribution of the correlations. We

started by performing experiments on a large number of random keys and observed that the

total variance of the correlation distribution for some linear approximations of PRESENT

with identical round-keys is consistently bigger than that of standard PRESENT for any

number of rounds ≥ 5. Fig. 4.2 shows the distribution of the linear correlation for the identical

round-keys case vs. the original PRESENT key-scheduling for 17 rounds.

Fig. 4.2: The (normalized) probability distribution of the PRESENT-cipher with the
usual vs the identical round-keys case

The difference is significant in the sense that more rounds of PRESENT with identical round-

keys are vulnerable to linear attacks for a non-negligible fraction of keys. In other words, the

choice of the key-scheduling that makes the cipher secure or insecure against linear cryptanal-

ysis. To illustrate the difference consider a 20 round version. The fraction of keys with a

squared correlation larger than 2−53 is 33.7% in the case of identical round-keys but only 1.1%
in the case of the standard PRESENT key-scheduling.

For computing the variance of a sum of random variables it is sufficient to study the pairwise

covariance of the summands. In order to compute this variance, we need to figure out which

trails are distinct and which are non-distinct. So let us, suppose that we have the following

random variables, Si and Sj , representing the signs of the correlation of the ith trail and the

jth trail respectively of an r-round linear approximation (α, β) with input and output masks of

Hamming weight one and only one active Sbox per round in PRESENT with identical round

keys. Let (α = α0i, α1i, · · · , αri = β) denote the ith trail and (α = α0j , α1j , · · · , αrj = β)
denote the jth trail. Thus,

Si = (−1)<α0i,k>⊕<α1i,k>⊕···⊕<αri,k>
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and

Sj = (−1)<α0j ,k>⊕<α1j ,k>⊕···⊕<αrj ,k>

where k is the key at each round. One can see that Si and Sj are identical when

r⊕
x=0

αxi =
r⊕

x=0
αxj

In other words two trails are identical iff the (xor) sums of all intermediate masks are identical.

While in general, computing the number of trails is much more efficient than listing all trails,

it is still feasible for r ≤ 20 to compute the list of trails and sort this list according to the sum

of the intermediate masks. Thus, for r ≤ 20 we can relatively easily compute the expected

variance for the PRESENT-variant with identical round-keys. Table 4.5 shows the expected

variance (Var2) of the bias distribution of the optimal linear approximation for a specific one bit

input and output difference (i.e. input mask = e43, output mask = e43). For PRESENT with

identical round-keys the expected variance is very close to the observed variance (ObsVar)

sampled over 20000 random keys. Table 4.5 also shows the expected variance of the bias

distribution of the optimal linear approximation of (standard) PRESENT (Var1) along with

the number of trails (N1) with one active Sbox per round, and the number of independent

trails (N2), for number of rounds r, 5 ≤ r ≤ 20.

In the following, we explain exactly what happens for the distribution of the correlation of

the linear approximation (e43, e43) of 5 rounds of PRESENT using the same round key k =
(k1, k2, · · · , k64) and round constants affecting few of the rightmost bits. From Table 4.5, we

see that the linear approximation with input mask and output mask equal to e43 has 9 trails

where 5 of them are independent. As we know in PRESENT all the linear trails with one

active Sbox per round have the same correlation absolute value
(

1
4

)5
and only differs in the

sign of the correlation. The sign of the correlation of each trail represents a random variable

Si and it is a product of the sign of correlation from the Sboxes correlations and the sign of the

correlation from the round keys and round constants. Now for all the trails, the sign from the

Sboxes when 5 rounds are used is always positive and there are no round constants involved

in all the trails. More precisely, we have the following expression for the sign of each trail
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Table 4.5: Analytical and experimental data on r-round reduced PRESENT (possibly
with identical round-keys). N1 is the number of all linear trials with one active Sbox. N2
is the number of trails (among N1) that are independent from all the other trails. Var1
gives the expected variance of the bias of the optimal linear approximation of (standard)
PRESENT, while Var2 corresponds to PRESENT with identical round-keys. ObsVar
is the experimentally observed variance sampled over 20000 random keys.

r N1 N2 log2(Var1) log2(Var2) log2(ObsVar)
5 9 5 −16.83 −16.30 −16.28
6 27 13 −19.25 −18.45 −18.47
7 72 19 −21.83 −20.93 −20.94
8 192 51 −24.42 −23.27 −23.29
9 512 101 −27.00 −25.85 −25.84
10 1344 180 −29.61 −28.40 −28.43
11 3528 318 −32.22 −30.87 −30.86
12 9261 498 −34.82 −33.23 −33.34
13 24255 723 −37.43 −35.74 −35.73
14 63525 991 −40.04 −38.18 −38.34
15 166375 1184 −42.66 −40.71 −40.71
16 435600 1232 −45.26 −43.15 −43.28
17 1140480 1143 −47.88 −45.63 −45.61
18 2985984 890 −50.49 −48.03 −48.12
19 7817472 575 −53.10 −50.50 −50.52
20 20466576 300 −55.71 −52.88 −52.92

S1 = (−1)k43⊕k43⊕k43⊕k43⊕k43⊕k43

S2 = (−1)k43⊕k43⊕k27⊕k39⊕k42⊕k43

S3 = (−1)k43⊕k43⊕k11⊕k35⊕k41⊕k43

S4 = (−1)k43⊕k27⊕k39⊕k42⊕k43⊕k43

S5 = (−1)k43⊕k27⊕k23⊕k38⊕k42⊕k43

S6 = (−1)k43⊕k27⊕k7⊕k34⊕k41⊕k43

S7 = (−1)k43⊕k11⊕k35⊕k41⊕k43⊕k43

S8 = (−1)k43⊕k11⊕k19⊕k37⊕k42⊕k43

S9 = (−1)k43⊕k11⊕k3⊕k33⊕k41⊕k43
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From the above equations, we see that

S2 = S4 = (−1)k27⊕k39⊕k42⊕k43

and

S3 = S7 = (−1)k11⊕k35⊕k41⊕k43

and the other five random variables S1, S5, S6, S8 and S9 are independent from them. Now

the correlation of each trail Ci = (1
4)5Si is a random variable following the binary distribution

with mean zero and variance C2
i = (1

4)10. Thus, the variance of the distribution of the linear

approximation (e43, e43), Var2 is calculated as follows:

Var2 = Var(C1 + C2 + C3 + C4 + C5 + C6 + C7 + C8 + C9)

= Var(C1 + 2C2 + 2C3 + C5 + C6 + C8 + C9)

= Var(C1) + 4Var(C2) + 4Var(C3) + Var(C5) + Var(C6) + Var(C8) + Var(C9)

= 13C2
i ≈ 2−16.30.

4.3 Conclusion and Future Work

In this chapter, we used sparse difference and correlation submatrices to estimate the prob-

abilities of low-weight differential and linear approximations respectively in PRESENT-like

ciphers. This estimation approach can also be used in any cipher allowing low-weight differ-

ential and linear characteristics. Using these sparse matrices, we found linear distinguishers

for 23-round of SPONGENT-88. While this is far from distinguishing the full 45 rounds of

SPONGENT-88, it is the best currently known result against SPONGENT. We also pre-

sented four 24-round statistical saturation distinguishers which break 26-round of PRESENT

and that is more than the rounds attacked by the original statistical saturation attack [39].

It would be interesting to investigate whether using large difference and correlation subma-

trices for PRESENT and SPONGENT-88 with entries having Hamming weight at most 5

would make some improvements over this work. Looking at Table 4.1 we see that the time

complexities for constructing these submatrices take around 234 and 236 arithmetic opera-

tions for PRESENT and SPONGENT-88 respectively which could be feasible using parallel

computing.

We also showed that the key scheduling algorithm can significantly affect the distribution

of linear approximations in PRESENT-like ciphers (See also Chapter 6). More specifically,

we showed that the distribution of linear approximations with input and output masks of
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Hamming weight one in PRESENT with identical round keys is significantly larger than

PRESENT with independent round keys. As a further work, it would be interesting to

compare the correlation distribution in PRESENT with identical round keys and PRESENT

with independent round keys when input and output masks of Hamming weight more than one

are used since these input and output masks yield better approximations as shown in Table

4.2.
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Chapter 5

Differential Cryptanalysis of
Round-Reduced PRINTcipher:
Computing Roots of Permutations

In this chapter, we mount a differential attack on the block cipher PRINTcipher described in

Chapter 3 (See Section 3.1.2). As PRINTcipher uses a key-dependent permutations, it might

seem first that mounting a differential attack on PRINTcipher is difficult due to the unknown

bit permutations which make it impractical to use the submatrix approach method explained

in the previous Chapter. We show in this chapter that this is not the case. We present two

differential attacks that successfully break about half of the rounds of PRINTcipher.

Moreover, one of the attacks is of independent interest, since it uses a mechanism to compute

roots of permutations. If an attacker knows the many-round permutation πr, the algorithm

can be used to compute the underlying single-round permutation π. This technique is thus

relevant for all iterative ciphers that deploy key-dependent permutations. In the case of

PRINTcipher, it can be used to show that the linear layer adds little to the security against

differential attacks.

We close the chapter by explaining how to design an authentication protocol whose security

is based on a multi-valued function, namely, the r-th roots of a permutation in the symmetric

group Sn.

5.1 Using Differential Cryptanalysis To Recover the

Permutation Key

For PRINTcipher, the classical differential attacks described in Chapter 2 can not be directly

applied in a straightforward fashion, since finding good differentials requires the knowledge of

the linear layer, which for PRINTcipher is key-dependent and thus unknown. As already

pointed out, however, this disadvantage can also be turned into an advantage for the attacker:
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It can be used to learn something about the part of the key that defines the linear layer.

5.1.1 Optimal Differential Characteristic

We start our analysis by proving the following fact about the optimal PRINTcipher charac-

teristic.

Theorem 5.1.1. Given an input difference α of weight one, the unique most probable r-round

differential characteristic is

α→ (P ◦K)(α)→ (P ◦K)2(α)→ (P ◦K)r(α),

which will occur with probability
(

1
4

)r
, where the symbol ‘◦’ refers to the composition operation

of the symmetric group (S48 or S96).

Proof. The difference distribution table for the PRINTcipher Sbox (See Table 3.4) shows

that all occurring differences are equally probable (prob. 1
4) and that for every 1-bit input

difference, there exists exactly one 1-bit output difference. From this, it follows that starting

with a 1-bit input difference, a 1-bit differential trail through r rounds of PRINTcipher

occurs with probability
(

1
4

)r
. Note also that this trail has the minimum possible number of

r active Sboxes and that no other Sbox difference is more probable, meaning that this trail is

the most probable one.

Also note that in Table 3.4 the 1-bit output difference always occurs in the same bit position

as the 1-bit input difference. This means that if the 1-bit differential occurs, the Sbox does

not permute the active bit - its position on the differential trail is only influenced by the

fixed permutation P and the key-dependent permutation K. Thus, the difference α is indeed

mapped to (P ◦K)r(α), which proves the theorem.

5.1.2 Targeting the Xor Key

In the following, we assume that the attacker has the full code book at his disposal (i.e. 248

plaintext/ciphertext pairs for r rounds of PRINTcipher-48). For every 1-bit input difference

α1 = (100...0), α2 = (010...0), . . . , α48 = (000...1), the attacker now forms all 247 input pairs

with x ⊕ x′ = αi and checks whether the output difference also has weight one. If yes, he

assumes that he has found the above optimal characteristic. It turns out that as long as
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r ≤ 22, this is very likely to happen1.

Every successful 1-bit differential gives the attacker information about the internal behaviour

of the cipher which can be used to reconstruct part of the xor key. Consider the first round of

the cipher and note that according to [77], the order of Sbox and key-dependent permutation

can be inversed by adding two constants c and d that do not affect the differential. Thus, we can

alternatively consider one PRINTcipher round to consist of key addition, fixed permutation,

round constant, adding c, Sbox, key-dependent permutation, and adding d. In particular, for

the purposes of differential cryptanalysis, we can assume the Sbox to follow directly after the

key addition.

Now consider a successful differential with input difference α1 = (100...0). Three key bits

(with indices 1, 17 and 33) will affect the bits that go into the first Sbox. There are a priori

8 possible choices for these bits, generating all possible 3-bit Sbox input pairs with difference

α1. However, as shown in Table 3.4, only 2 of them will lead to a 1-bit output difference after

running through the Sbox. Thus, only 1
4 of all keys meet the condition for the first Sbox,

reducing the key entropy by 2 bit. Thus, finding 16 successful 1-bit to 1-bit differentials (one

for each Sbox) will reduce the key entropy by 32 bit, leaving a brute-force effort of 248 steps.

This work factor could be reduced further, but without greatly affecting the overall running

time, which is dominated by the 248 steps of computing the full code book anyway.

The False Positive Problem: The above description is a simplification since it does not

take false positives into account. For every 1-bit differential, trying out 247 plaintext pairs

will yield 247 · 48
248 = 24 false positives on average, i.e. 1-bit output differences that occur

accidentially and not as a result of the correct differential. The question remains how they

can be distinguished from the cases where the 1-bit output differences really result from the

desired differential. It turns out that for 22 rounds, the probability that all 48 differentials

are met at least three times is 0.514, meaning that in more than half of the cases, the correct

1-bit difference should be recognizable by occuring more often than the false positives, which

very rarely occur more than twice.

5.1.3 Targeting the Linear Layer

As it turns out, there is also a different way of using the above differential to cryptanalyze

PRINTcipher. Remembering that according to Theorem 5.1.1, every 1-bit to 1-bit char-

1We have 247 pairs and a success probability of
( 1

4
)22 = 2−44, yielding a success probability close

to 1 for any single index i and of ≈ 0.984 for all 48 indices. When increasing the number of rounds to
r = 23, the success probability drops to 0.865 for any single index and to 0.001 for all 48 indices.

75



acteristic is optimal and describes the mapping α → (P ◦ K)r(α), the following corollary

immediately follows:

Corollary 5.1.2. Learning all optimal characteristics is the same as learning (P ◦K)r.

If the attacker has the full code book available, he can form 247 plaintext pairs for every 1-bit

input difference. The probability that at least one example of all 48 1-bit differentials is found

is 0.984, and as stated above, the probability that they all can be distinguished successfully

from false positives is 0.514. Thus, for up to r = 22 rounds of PRINTcipher-48, the attacker

can learn the permutation (P ◦K)r.

If he can find the r-th root of this permutation, then he has derived P ◦K and thus the linear

layer key K. Once this has been done, the xor key can be retrieved bitwise, using a simple

divide-and-conquer attack similar to the one described in Subsection 5.1.2. It turns out that

here too, the overall running time is dominated by computing the code book, i.e. the attack

requires about 248 computational steps.

This type of differential attack is the dual to the one targeting the xor key and is relevant

for all SPN-like ciphers that use key-dependent permutations. For this reason, it is not only

interesting for the analysis of PRINTcipher, but also for the understanding of key-dependent

permutations in general. In the rest of this chapter, we will thus discuss the computation of

permutation roots in more detail.

5.2 Finding (PRINTcipher)-Roots of a Permutation

From the previous section, we see that our problem of finding the permutation key can be

reduced to the problem of finding the r-th roots of a given permutation in the symmetric

groups, S48 and S96, where r is the number of rounds.

Any permutation can be expressed as a product of disjoint cycles, and it is this representation

that is most useful when computing roots. In particular, the permutation found through

differential cryptanalysis can be expressed as a product of disjoint cycles in S48 and S96.

As the elements of Sb ranges from 1 to b, we re-arrange the bitwise permutation of PRINT-

cipher with block size b described in Chapter 3 to be in the range from 1 to b rather than

from 0 to b− 1. The PRINTcipher bit permutation P (i) can be re-written as follows

P (i) =

 3i− 2 mod b− 1 for 1 ≤ i ≤ b− 1,
b for i = b,
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where b ∈ {48, 96} is the block size.

Before describing how to find a root for a permutation in general, we outline the basic ideas.

For this, let us first see what happens when we raise a single cycle to the r-th power.

Let c = (c0, c1, . . . , cl−1) be a cycle of length l in Sn. Then c2 will remain a single cycle when

l is odd, namely, c2 = (c0, c2, . . . , cl−1, c1, c3, . . . , cl−2), and will be decomposed into 2 cycles

when l is even, namely, c2 = (c0, c2, . . . , cl−2)(c1, c3, . . . , cl−1). In general, depending on l, cr

will either remain a single cycle or be decomposed into a number of cycles having the same

length (See Lemma 5.2.1). Each element ci will be in a cycle, say, (ci, ci+r, ci+2r, . . . , ci+(k−1)r),
where i+kr ≡ i (mod l) and i+ jr is reduced modulo l for each j. So in order to find the r-th

root we have two cases, the first one is when cr is a single cycle, and here cr equals exactly

(c0, cr, c2r, . . . , c(l−1)r). The second case is when cr consists of a number of disjoint cycles, and

here we combine these disjoint cycles into a single cycle in a certain way in order to get c (see

the proof of Theorem 5.2.2). To illustrate this, let us find the square root of the permutation

σ2 = (1, 3, 2)(4, 6, 7)(5)(8) in S8. According to the above explanation, we know that cycles of

the same length are either a decomposition of a single cycle in the root σ or a reordering of a

single cycle in the root σ. Considering cycles of length 1, (5) and (8), it is obvious that they

arise from either (5)(8) or (5, 8).

Thus, there are two possibilities for cycles of length 1 in σ. Cycles of length 3, (1, 3, 2)
and (4, 6, 7), are either a decomposition of a single cycle in σ, this could be (1, 4, 3, 6, 2, 7),
(1, 6, 3, 7, 2, 4) or (1, 7, 3, 4, 2, 6); or a reordering of disjoint cycles in σ and this could only be

(1, 2, 3)(4, 7, 6). Summarizing, there are four possibilities for cycles of length 3 in σ. So the

total number of square roots for the permutation σ2 is 8.

5.2.1 The General Case

The procedure for constructing an r-th root for a permutation, described in [110], is based on

the following basic fact in the theory of symmetric groups which can be easily deduced from

the previous explanation.

Lemma 5.2.1. Let C ∈ Sn be a cycle of length l and let r be a positive integer. Then Cr

consists of gcd(l, r) disjoint cycles, each of length l
gcd(l,r) .

The following theorem is due to A. Knopfmacher and R. Warlimont [110, p. 148]. We recall

its proof, as the proof describes how to construct an r-th root. Throughout the rest of this

chapter, we use the notation l-cycle to mean a cycle of length l.
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Theorem 5.2.2. [8, 110] Let r = pi11 p
i2
2 . . . p

in
n , where p1, p2, . . . , pn are the prime factors of

r. A permutation Q ∈ Sn has an r-th root, iff for every integer l ≥ 1, the number of l-cycles

in Q is divisible by ((l, r)) :=
∏
{j:pj |l} p

ij
j .

Proof. (⇐): to prove this, we construct an r-th root, R, of Q. Let al be the number of l-cycles

in Q. Let g = ((l, r)). Then al = gm, where m is an integer, so we can divide the l-cycles

of Q into m groups where each group consists of g l-cycles. Assume that we have the cycles,

cij = (c(0)
ij , c

(1)
ij , . . . , c

(l−1)
ij ) where 1 ≤ i ≤ g and 1 ≤ j ≤ m. For each j, we construct a cycle of

length gl, say

Rj = (c(0)
1j , c

(0)
2j , . . . , c

(0)
gj , c

(d)
1j , c

(d)
2j , . . . , c

(d)
gj , . . . , c

((l−1)d)
1j , c

((l−1)d)
2j , . . . , c

((l−1)d)
gj ),

where d = r
g and sd is reduced modulo l for each 1 ≤ s ≤ l− 1. Now Rj is a cycle of length gl,

so according to the previous lemma, Rrj consists of gcd(gl, r) cycles of length gl
gcd(gl,r) . Now,

since g = ((l, r)), then gcd(l, rg ) = 1 and so gcd(gl, r) = g, which means that Rrj consists of g

cycles of length l, namely, c1j , c2j , . . . , cgj . So
∏
j:1≤j≤mRj is an r-th root for the l-cycles of

Q. Repeating the same procedure for all l will yield an r-th root of Q. For the proof of (⇒),

see [8].

In [55, 84], a procedure to find all the roots of Q is described. Going back to the previous

theorem, we see that the main property that enables us to construct an r-th root for the

l-cycles of Q is having gcd(gl, r) = g. Repeating the same procedure for all the g’s that satisfy

gcd(gl, r) = g will allow us to find all the possible roots that can come from the l-cycles.

Note that g is bounded by al (the number of l-cycles). To find all the roots, for each group

consisting of l-cycles in Q, we proceed as follows.

First we construct the set Gr(l, al) = {gi : gcd(gil, r) = gi and 1 ≤ gi ≤ al}. Now, this tells us

that the roots have cycles of length gil, but we do not know how many of them. For this, we

solve the following Frobenius equation for xi ≥ 0:

g1x1 + g2x2 + · · ·+ gkxk = al where k = |G| (5.1)

This equation will usually have more than one solution. Each solution corresponds to a possible

cycle structure of the roots. For instance, the solution x = (x1, x2, . . . , xk), tells us that each

corresponding root for the l-cycles of Q consists of xi cycles of length gil for 1 ≤ i ≤ k.

The efficiency of computing all roots is of course bounded by the total number of roots. If a

permutation has a huge number of roots, computing all of them is very time consuming. It is
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therefore of interest to know the number of roots in advance.

In [84], using the above information about the cycle structure of permutations that have an

r-th root, the following explicit formula2 for calculating the number of all the possible roots

is provided.

Theorem 5.2.3. [84] Let r be a positive integer and Q ∈ Sn. Let al be the number of l-cycles

in Q, where 1 ≤ l ≤ n. Let X(l, al) be the set of all the possible solutions of equation (5.1).

Then the number of r-th roots of Q is

∏
al 6=0

al!
( ∑
x∈X(l,al)

k∏
i=1

l(gi−1)xi

gxi
i xi!

)
(5.2)

where x = (x1, x2, . . . , xk) and {gi : 1 ≤ i ≤ k} are the elements of Gr(l, al).

To get a feeling of how many roots of a permutation can be expected for the case of PRINTcipher-

48, let us take the following permutation in S48, suppose we have

τ24 =(1, 7, 47)(2, 19, 45)(3, 48, 17)(4, 9, 38)(5, 16)(6, 33, 32)(8, 28)(10, 35)(11,

27, 18)(12, 20)(14, 19, 41)(15, 46)(21, 26, 30)(22, 34)(23, 36)(25, 42, 39)

(40, 44)(13)(24)(31)(37)(43) (5.3)

So we have a1 = 5, a2 = 8, a3 = 9 and al = 0 for 4 ≤ l ≤ 48. G(1, a1) = {1, 2, 3, 4},
X(1, a1) = {(0, 1, 1, 0), (1, 0, 0, 1), (1, 2, 0, 0), (2, 0, 1, 0), (3, 1, 0, 0), (5, 0, 0, 0)}, G(2, a2) = {8},
X(2, a2) = {(1)} and G(3, a3) = {3, 6}, X(3, a3) = {(3, 0), (1, 1)}. Plugging these values into

equation (5.2), we find that the number of roots is ' 251.3. Moreover, the case where τ22 is

the Identity has ' 2192 roots in S48.

Note that out of all 48!(96!) permutations only a tiny fraction of 232(264) permutations actually

correspond to a valid key in PRINTcipher-48(96). We can therefore expect that in the

above example out of the ' 251.3 only a very small number will actually correspond to a

PRINTcipher-permutation. In particular there is only one root for equation (5.3) that

corresponds to a PRINTcipher permutation.

The main purpose of the next section is to describe a method that filters out wrong can-

didates as soon as possible, allowing to considerably speed up the computation of all valid

PRINTcipher-roots.

2 A more complicated formula was previously found by Pavlov in [96].
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5.2.2 PRINTcipher-Roots

As discussed in the last section, computing all the roots of (P ◦ K)r in order to find the

right permutation key is inefficient. In this section we describe a method that finds the

permutation roots P ◦K belonging to the 232(264) possible permutations in PRINTcipher-

48(96). Throughout the rest of this chapter, we only discuss PRINTcipher-48 and unless

mentioned explicitly, the assumption is that everything about PRINTcipher-48 follows for

PRINTcipher-96 with a slight modification.

Our method uses the fact that when we apply the fixed permutation, P , for all 1 ≤ i ≤ 16, the

3 bits i, i + 16 and i + 32 go to the ith Sbox, where depending on the permutation key, they

are permuted to only four out of the six possible permutations. So the result of applying the

fixed permutation, P , and then applying the keyed permutation, K, on a 48 bits plain text,

is a permutation P ◦K that satisfies the following two properties:

1. Property 1: For all 1 ≤ i ≤ 48, P ◦K(i) equals one of the following three possible values

depending on K,

P ◦K(i) =


3i− 2 (mod 48 if 3i− 2 6= 48)

3i− 1 (mod 48 if 3i− 1 6= 48)

3i (mod 48 if 3i 6= 48)

2. Property 2: Only 4 out of the 6 possible 3-bit permutations are valid, namely, P ◦K(i),
P ◦K(i+ 16) and P ◦K(i+ 32) are permuted to one of the four possible permutations,

i.e., for all 1 ≤ i ≤ 48, the following two permutations are not allowed:

(a) P ◦K(i) = 3i− 1, P ◦K(i+ 16) = 3i and P ◦K(i+ 32) = 3i− 2.

(b) P ◦K(i) = 3i, P ◦K(i+ 16) = 3i− 2 and P ◦K(i+ 32) = 3i− 1.

Definition 4. A PRINTcipher permutation root is any permutation on 48 elements satis-

fying both Property 1 and Property 2.

Definition 5. A PRINTcipher permutation(cycle) is any permutation(cycle) on less than

48 elements satisfying both Property 1 and Property 2.

To explain these definitions, consider the following two cycles (14, 41, 25, 26, 30, 42, 29, 39, 21)
and (14, 42, 30, 41, 25, 26, 29, 39, 21). We want to investigate whether these cycles are PRINT-

cipher cycles or not. The latter cycle satisfies the two properties and so it is a PRINTcipher

cycle, in other words it can be part of a PRINTcipher permutation root, P ◦K. The for-

mer cycle satisfies only Property 1 but not Property 2 since we have P ◦ K(14) = 41 and
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P ◦ K(30) = 42 and therefore P ◦ K(42) = 40 , and this is one of the two disallowed per-

mutations (see item (a) in Property 2) and so it cannot be part of a valid PRINTcipher

permutation root, P ◦ K. Sometimes we can have a permutation consisting of two or more

cycles having same or different lengths, that satisfies Property 1 but not Property 2. For exam-

ple, the following permutation, (1, 2, 6, 17)(5, 15, 44, 34), satisfies Property 1 but not Property

2 as we have P ◦K(2) = 6 and P ◦K(34) = 5 and therefore P ◦K(18) = 4, which is an invalid

PRINTcipher permutation (see item (b) in Property 2).

Since the same cycles and permutations can be written in different ways, our method adopts

the notion that starts writing each cycle by its smallest element and lexicographically order

the disjoint cycles of the same length of a permutation in order to avoid repetitions in the

permutation roots of (P ◦K)r. Our method consists of two algorithms: the first one constructs

a PRINTcipher cycle of length gl and the second one uses the first algorithm to construct k

combined disjoint cycles, each of length gl. In what follows, we shall give a detailed description

of the two algorithms and end this section by showing how to use Algorithm 7 to find the whole

PRINTcipher permutation roots of (P ◦K)r.

Finding single PRINTcipher cycles

Given al cycles of length l, the following algorithm constructs all the possible PRINTcipher

cycles of length gl beginning with an element called first specified in the input (must be one

the the first elements in one of these al cycles). The algorithm performs a depth first search

to find all the other possible g − 1 cycles with minimal elements larger than first and can

be combined with the cycle containing first as described in Theorem 5.2.2 in order to form a

PRINTcipher cycle (or just reorder the given cycle in the case g = 1 as described previously).

Plugging all the 2-cycles of equation (5.3) and setting first = 5 and g = 8 will produce the fol-

lowing PRINTcipher cycle of length 16, (5, 15, 44, 36, 12, 35, 8, 22, 16, 46, 40, 23, 20, 10, 28, 34).
Algorithm 6 enables us to find a PRINTcipher permutation consisting of only one cycle of

length gl but note that some of the xi’s in equation (5.1) can be more than 1. So we need

another algorithm which can find a PRINTcipher permutation consisting of k disjoint cycles

where k ≥ 1.

Finding k combined PRINTcipher cycles

Given al cycles of length l, the following algorithm constructs a permutation beginning with

an element called first specified in the input (must be the first element in one of these al

cycles) and consisting of k combined and disjoint cycles ordered lexicographically. It basically
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Algorithm 6 finds a PRINTcipher cycle of length gl
find-cycle(cycle, current, g, l-cycles)

Require: l-cycles numbered from 1 to al where al ≥ g
Require: current = first, cycle = first
Ensure: cycle is a PRINTcipher cycle of length gl

1: for count=0 to 2 do
2: next = 3 × current - count
3: if next ∈ l-cycles then
4: if next > first and next.cycleno 6= first.cycleno and cycle.length < g then
5: if next.cycleno 6= the cycleno of all the elements of cycle then
6: Add next to cycle
7: current = next
8: Perform again this algorithm on cycle, find-cycle(cycle, current, g, l-cycles)
9: end if

10: else if cycle.length = g and next.cycleno = first.cycleno then
11: Complete the construction of cycle by combining the g different cycles to get a

single cycle of length gl as shown in the proof of Theorem 1 (when g = 1, reorder
the cycle containing first as described previously and assign it to cycle)

12: if cycle satisfies Property 2 then
13: cycle is a PRINTcipher cycle of length gl
14: end if
15: end if
16: end if
17: end for
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performs a recursive depth first search. The recursive algorithm begins by invoking Algorithm

6 which outputs single cycles of length gl beginning with first. It then proceeds from each cycle

found by Algorithm 6 and concatenates it with the previously i−1 concatenated disjoint cycles

found after the ith recursive call and if the concatenation satisfies Property 2, it recursively

calls itself a number of times, each time with a different first element to begin the required

permutation with as this will enable us to find all the possible i+1 disjoint cycles, on a reduced

number of l-cycles (exactly al − gi cycles) consisting of all the l-cycles except the gi cycles

involved on the i concatenated disjoint cycles (in each invocation first is set to the smallest

element on one of the currently available al− gi cycles). Each recursive call stops when i = k,

or when Algorithm 6 returns nothing, or when each concatenation of i cycles does not satisfy

Property 2.

Using Algorithm 6 for all the possible g’s along with all the possible first values and setting

a1 = 48, we can find all the possible PRINTcipher cycles. For instance, when g = 1 and

a1 = 48, Algorithm 6 returns four 1-cycles when trying all the possible values for first, namely,

(1), (24), (25) and (48). When g = 2 and a2 = 48, we found that there are six possible

2-cycles, namely, (6, 18), (7, 19), (12, 36), (13, 37), (30, 42) and (31, 43). When g = 3, we

found there are eight possible 3-cycles. This information enables us to reduce the size of the

cycle structure of the roots by removing any structure containing more than four 1-cycles, six

2-cycles and eight 3-cycles. It also enables us to easily find some roots, for example, knowing

all PRINTcipher cycles of length 1 and 2, we can easily find that (24)(13, 37)(30, 42) is a

PRINTcipher permutation that is a root for the 1-cycles of equation (5.3).

Moreover, using Algorithm 7 we find that we cannot have a permutation consisting of more

than 6 disjoint cycles of length 5 in PRINTcipher-48 and not more than 9 cycles of length

4, 12 cycles of length 5, 13 cycles of length 6 and 12 cycles of length 7 in PRINTcipher-96.

This will generally reduce the number of solutions of equation (5.1) and therefore the size of

the cycle structure which will speed up the process of finding PRINTcipher permutations

roots.

Finding PRINTcipher permutations

Now, when given al cycles of length l, Algorithm 7 enables us to find PRINTcipher permu-

tations beginning with a specified element and consisting of k cycles, each of length gl. But in

order to find the rth permutation roots for all the l-cycles we use Algorithm 7 together with

the elements of the sets G(l, al) and X(l, al). Each entry xj = (xj1, xj2, . . . , xjk) ∈ X(l, al)
where k = |G(l, al)|, represents the cycle structure of many rth roots for the l-cycles and it

might correspond to few or none PRINTcipher permutations, so for each xj ∈ X(l, al), we

try to find all the possible PRINTcipher permutations beginning with a specific element
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Algorithm 7 finds a PRINTcipher permutation that has k disjoint gl-cycles
find-k-cycles(C, current, k, g, l-cycles)

Require: l-cycles numbered from 1 to al where al ≥ g
Require: current = first
Require: C = {}
Ensure: k disjoint PRINTcipher gl-cycles, or return {} if there is no k disjoint PRINT-

cipher cycles
1: Invoke Alg. 6 on the current l-cycles
2: if number of cycles found by Alg. 1 > 0 then
3: if the number of disjoint cycles in C consists of k − 1 disjoint cycles then
4: for each permutation cycle found by Alg. 6 do
5: C = C ∪ cycle
6: if C satisfies Property 2 then
7: return C
8: else
9: return {}

10: end if
11: end for
12: else
13: for each cycle found by Alg. 6 do
14: C = C ∪ cycle
15: if C satisfies Property 2 then
16: Delete all the l-cycles involved in C from the al cycles of length l
17: for each cycle ∈ currently available l-cycles do
18: {Perform again this algorithm on the current l-cycles to find the other k − 1

cycles}
19: current = first element in cycle
20: find-k-cycles(C, current, k, g, l-cycles)
21: end for
22: end if
23: end for
24: end if
25: else
26: return
27: end if
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called first (must be the first element in one of these al cycles) and that can be roots for the

l-cycles by applying Algorithm 7 through all the nonzero entries of xj . Trying all the possible

values for first gives us all PRINTcipher permutations that are roots for all the l-cycles.

Now, assume that we find all the possible PRINTcipher permutations for each l, say σli , for

1 ≤ i ≤ ηl where ηl is the number of permutation roots of the l-cycles of (P ◦K)r, so all the

possible products
∏
al>0 σli where 1 ≤ l ≤ 48 and 1 ≤ i ≤ ηl, represent the PRINTcipher

permutation roots which are the possible values for P ◦K and by brute forcing these P ◦K
values we can recover the permutation key, K.

Let us try to find PRINTcipher permutations that are roots for the nine 3-cycles in equation

(5.3). We have G(3, a3) = {3, 6} and X(3, a3) = {(3, 0), (1, 1)}. We start with, x1 = (3, 0),
here we only need to apply Algorithm 7 using any possible first because the 3 disjoint cycles

of length 9 would come from all the 9 cycles. Setting first = 1 and applying Algorithm 7

doesn’t give us 3 disjoint cycles of length 9, so we conclude that there is no root having the

cycle structure x1. So we go to the next cycle structure, x2 = (1, 1), we start with x21 = 1 and

use Algorithm 7 on all the possible first values. Setting first = 1, 2, 3, 4, 6 and 11 doesn’t yield

a single cycle of length 9, while first = 14 yields the cycle (14, 42, 30, 41, 25, 26, 29, 39, 21),
we save it and continue to the next element x22 = 1 where we use Algorithm 7 on the

6 cycles that are not involved in the previous found cycle. Now we want to construct

a cycle of length 18, so all the 6 cycles would be involved in it, setting first = 1, yields

(1, 2, 4, 11, 33, 3, 7, 19, 9, 27, 32, 48, 47, 45, 38, 18, 6, 17). Concatenating this cycle with the pre-

vious found cycle, we get (14, 42, 30, 41, 25, 26, 29, 39, 21)(1, 2, 4, 11, 33, 3, 7, 19, 9, 27, 32, 48, 47,
45, 38, 18, 6, 17) which satisfies Property 2. This means that it is a PRINTcipher permutation

that is a root for all the 3-cycles in equation (5.3). Now, we have found the roots for all the

l-cycles in equation (5.3). Concatenating them together gives us the following PRINTcipher

permutation root: (1, 2, 4, 11, 33, 3, 7, 19, 9, 27, 32, 48, 47, 45, 38, 18, 6, 17)(5, 15, 44, 36, 12, 35, 8,
22, 16, 46, 40, 23, 20, 10, 28, 34)(14, 42, 30, 41, 25, 26, 29, 39, 21)(13, 37)(30, 42)(24).

5.3 Experimental Verifications

To demonstrate the efficiency of our attack we implemented the above algorithms. Experiments

show that (P ◦K)r could yield more than one PRINTcipher root when (P ◦K)r contains

several 1-cycles, but in most cases there was exactly one PRINTcipher root.

To derive bounds for the number of PRINTcipher permutations roots, we computed the

number of all PRINTcipher permutation roots for (P ◦K)r = Identity where 2 ≤ r ≤ 22.

This seems the worst case that could happen for any r since a1 = 48, which is a1’s largest

value, and as shown in Table 5.1, the number of PRINTcipher roots when r = 22 is 222.04.

85



Algorithm 8 finds the permutation roots of the l-cycles of (P ◦K)r
Require: an ARRAY to hold all the roots of l-cycles of (P ◦K)r
Require: G(l, al), X(l, al), k = |G(l, al)|
Ensure: possible candidates for the roots of l-cycles.

1: for al 6= 0 in (P.K)r do
2: for each xj = {xj1, xj2, . . . , xjk} ∈ X(l, al) do
3: for each cycle ∈ al cycles of length l do
4: Select the first i such that xji > 0
5: Invoke Alg. 7 to find xji cycles of length gil (current = first element in cycle)

6: Save the roots found in the last step in the roots ARRAY
7: if the number of roots found in step 5 = 0 then
8: goto step 2
9: else

10: for i = i + 1 → k do
11: prevARRAY = ARRAY
12: ARRAY = {}
13: if xji 6= 0 then
14: for e ∈ prevARRAY do
15: Delete all the cycles involved in e from the l-cycles of (P.K)r
16: for each cycle ∈ currently available l-cycles do
17: Invoke Alg. 7 to find xji cycles of length gil (current = first

element in cycle)
18: Concatenate each root found in the last step with the current

element
19: for each concatenation do
20: if all the 3-bit permutations in the concatenated cycles are valid

then
21: Add the concatenated cycles as a one element to ARRAY
22: end if
23: end for
24: end for
25: end for
26: end if
27: end for
28: end if
29: end for
30: end for
31: end for
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Table 5.1: Results of the 104 trials and the worst case for 2 ≤ r ≤ 22, nk ≡ the number
of keys that yield more than one PRINTcipher permutation root, nw ≡ the number of
PRINTcipher permutation roots in the worst case.
r log2 nk log2 nw r log2 nk log2 nw r log2 nk log2 nw

2 - - 9 7.66 8.58 16 10.80 18.95
3 - - 10 8.33 11.90 17 8.71 -
4 6.11 2 11 7.94 9.31 18 11.16 20.67
5 2 - 12 11.46 17.39 19 8.77 -
6 9.30 4.17 13 8.47 - 20 10.68 21.54
7 3.70 - 14 9.10 16.27 21 9.18 18.73
8 9.59 10.07 15 9.77 16.63 22 9.59 22.04

These roots are found within less than 3 hours on a standard PC.

Furthermore, we tried 104 random PRINTcipher-48 permutation keys excluding the ones

that yield (P ◦ K)r = Identity. Note that, for a random key, the probability for the worst

case is 222.04

232 = 0.001 for 22 rounds and less than that for r < 22. These experiments took

a few seconds on average on a standard PC and they show that most of the time there is a

unique PRINTcipher permutation root. Table 5.1 shows the number of keys (nk), out of the

104 random keys, that yield more than one PRINTcipher permutation root. It also shows

the number of PRINTcipher permutation roots in the worst case (nw) for each number of

rounds.

5.4 Security Based on the Many r-th Roots of a

Permutation

Almost all the current authentication protocols base their security proofs on a one-way cryp-

tographic function. In contrast, we propose an authentication protocol whose security is based

on a multi-valued function which is interestingly the roots of a permutation π in the group of

all permutations Sn.

From the previous sections, we know that the number of r-th roots of a permutation (P ◦K)r

can be very large. We also know that we are only able to recover the PRINTcipher permu-

tation key K because we know the structure of K and the whole permutation P . However, if

the structure of K is unknown, then the above attack would not work. Based on these two

observations we can construct the following authentication protocol.
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An Authentication Protocol Based on a Multi-Valued Function: Assume that

there are two parties P (Prover) and V (Verifier) who share a secret key K ∈ Sn. P wants to

prove to V that it knows the secret key K. Our authentication protocol can be described as

follows:

1. V generates a random permutation Cp ∈ Sn.

2. V sends a challenge Cp ∈ Sn to P.

3. P generates a random permutation Cv ∈ Sn and computes Q = (Cv ◦K ◦Cp)r, where r

is a composite number chosen in a specific way (If r is prime, the number of roots could

possibly be smaller than when it is composite).

4. P sends Q, Cv and r to V (we can hide r to add more security at the cost of increasing

the verification time for V).

5. V checks whether (Cv ◦ K ◦ Cp)r equals Q or not (if r is not sent V starts by trying

r = 2 and incrementing r until a match is found).

6. If it equals then “P knows K, Success” else “P doesn’t know K, failure”.

Security Analysis: The obvious way for an adversary to recover K, is to compute the

r-th root of Q. Computing the r-th root of Q is easy but there could be many roots. If Q ∈ S64

then depending on the choice of r, there can be more than 264 roots and sometimes more than

2128. Thus if our security parameter is 64-bit or 80-bit, the protocol can be secure against this

specific attack. Therefore, we need to choose r so that (Cv ◦K ◦Cp)r has r-th roots more than

2s where s is our security parameter. Using formula 5.2 for computing the number of roots,

we fix the number of 1-cycles (a1) and r and check the corresponding number of roots. We

varied both a1 from 20 to 32 and r from 4 to 20, and calculated the corresponding number

of roots resulting only from the 1-cycles. The following table shows the minimum values of r

and a1 that gives us at least 264 or 280 number of rounds.

The above table shows that when r ≥ 4 and the number of 1-cycles of the permutation

Q = (Cv ◦K ◦ Cp)r is ≥ 30 then the number of the rth roots of Q is ≥ 280. Thus, it would

be infeasible to compute the r-th roots of Q in order to find the secret key K. This might be

one step towards proving that the protocol is secure. However, as pointed by Shamir in any

challenge-response application the secret key (here K) and the challenge (here Cp) should be

securely mixed similar to the mixing of the secret and IV in stream ciphers and then base the

response on the result of the mixing function [105].
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Table 5.2: The table shows the minimum combination of both r and a1 that makes the
number of rth roots of a permutation consisting only of cycles with length 1 at least 264

or 280. Note that r is a composite number as for some prime numbers, the number of
r-th roots is less than 280 or 264.

min(r) min(a1) min(# of r-th roots)

4 30 280

4 26 264

6 27 280

6 23 264

15 26 280

Therefore to avoid passive attacks that might exploit the algebraic structure of the permutation

Cv ◦K ◦ Cp or active attacks that might fix Cp to a certain permutation such as the Identity

permutation and exploit the algebraic structure of Cv◦K — for example by fixing the structure

of K to a certain class of permutations such as that of PRINTcipher, we need to use a simple

mixing function Mix(Cv,K,Cp) that yields a permutation M and then return Q = M r as a

response to the challenge Cp. The additional random value Cv is generated mainly to prevent

replay attacks.

More research needs to be done in order to specify a simple and suitable mixing function

that yields a permutation. Note that a permutation in Sn where n is a power of 2 can be

represented as an (log2 n)-bit Sbox in hardware [73]. Note also that the inputs to the mixing

function do not need to be permutations but only the output needs to be a permutation in

Sn. We believe that finding a suitable mixing function beside a hardware implementation for

this protocol are two interesting topics for future work.

5.5 Conclusions

We have described two differential attacks against 22 rounds of PRINTcipher-48, requiring

the full code book and about 248 computational steps. Similar results can be obtained for the

96-bit version of the cipher.

One of the attacks is a new technique targeting the key-dependent permutations used in

PRINTcipher. Since such key-dependent permutations are currently not well-studied, the

attack is of importance to past and future designs that use them. We introduced a novel

technique for computing permutation roots, making it possible to retrieve the key-dependent

single-round permutation π given nothing but the r-round permutation πr and the cipher

description. While our technique so far applies only to the case where the linear layer is a (key-
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depended) bit permutation, future designers of cryptographic primitives using key-dependent

permutations should be aware of this technique when choosing parameters like round numbers

or Sbox layout for their algorithms.

We also showed how to design an authentication protocol whose security is based on a multi-

valued function, namely, the r-th roots of a permutation in the symmetric group Sn.
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Chapter 6

Cryptanalysis of PRINTcipher: The
Invariant Subspace Attack

In this chapter, we present a new attack called invariant subspace attack that breaks the full

cipher for a significant fraction of its keys. For such weak keys, a chosen plaintext distin-

guishing attack can be mounted in unit time. This new attack can be seen as a weak-key

variant of a statistical saturation attack. We show that for weak keys, strongly biased linear

approximations exists for any number of rounds. In this sense, PRINTcipher behaves very

differently to what is usually – often implicitly – assumed.

In a nutshell, the attack is based on the observation that for PRINTcipher there exist

cosets of subspaces of Fn2 that the round function maps to cosets of the same subspace. The

exact coset is determined by the round key only. Now, if the round key is such that a coset

gets mapped to itself, the fact that all round keys are identical in PRINTcipher (almost)

immediately leads to the conclusion that for certain (weak) keys some affine subspaces are

invariant under encryption. The round constants, mainly introduced to avoid slide attacks,

do not prevent the attack as the round constants are included in the subspace. The principle

of the attack is described in Section 6.1.1.

More particular, using this new attack technique, which we call (for obvious reasons) invariant

subspace attack, we demonstrate the existence of 252 weak keys (out of 280) for PRINTcipher-

48 and 2102 weak keys (out of 2160) for PRINTcipher-96. If a key is weak, our attack results

in a distinguisher using less than 5 chosen plain- or ciphertexts. That is, even in the case of

RFID-tags, where the amount of data available for a practical attack is strictly limited, our

attacks apply. In a known plain- or ciphertext scenario the data complexity increases by a

factor of 216 (PRINTcipher-48) resp. 232 (PRINTcipher-96).

Besides the low data complexity of the distinguisher, the attack technique has interesting

relations to statistical saturation attacks and truncated differential attacks. In this chapter, we

are concerned only about its relation to the statistical saturation attack. For more information

on its relation to the truncated differential attack, we refer the reader to the original paper [83].

It follows in particular that PRINTcipher is an example of a non-toy cipher where attacks
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do not behave as we usually expect them to. The bias for statistical saturation attacks and

the bias of linear hulls are extremely key-dependent. For a weak key, increasing the number

of rounds up to the full number of rounds does not increase the security of the cipher with

respect to these attacks.

6.1 The Invariant Subspace Attack

6.1.1 General Idea

Consider an n-bit block cipher with a round function Ek consisting of a key addition and an

SP-layer

E : Fn2 → Fn2 ,

that is Ek is defined by Ek(x) = E(x + k). Assume that the SP-layer E is such that there

exists a subspace U ⊆ Fn2 and two constants c, d ∈ Fn2 with the property:

E(U + c) = U + d.

Then, given a (round) key k = u+ c+ d with u ∈ U , the following holds:

Ek(U + d) = E((U + d) + (u+ c+ d)) = E(U + c) = U + d,

i.e. the round function maps the affine subspace U + d onto itself. If all round keys are in

k ∈ U + (c+ d) (in particular if a constant round key is used), then this property is iterative

over an arbitrary number of rounds. This yields a very efficient distinguisher for a fraction of

the keys. U should be as large as possible to increase this fraction. We call this new attack

technique an invariant subspace attack. In the next section we show an example of how to

apply it to the lightweight block cipher PRINTcipher.

6.1.2 Attack against PRINTcipher

An Attack on PRINTcipher

One interesting property of the PRINTcipher Sbox is that a one bit difference in the input

causes a one bit difference in the same bit in the output with probability 2
8 . That is, there

exists exactly one pair for each one bit input difference resulting in a one bit output difference

(at the same position). More precisely, denoting by ∗ an arbitrary value in F2, the following

holds for the PRINTcipher Sbox:

92



Table 6.1: Specific 1-bit input and 1-bit output differences with probability 1
S(000) = 000
S(001) = 001

⇔ S(00*) = 00*

S(100) = 111
S(110) = 101

⇔ S(1*0) = 1*1

S(011) = 110
S(111) = 010

⇔ S(*11) = *10

In addition, there exists a subset of Sboxes such that (1) two output bits of those Sboxes map

onto two input bits of the same Sboxes in the next round and (2) the round-dependent RCi is

not involved (See Figure 6.1).

Fig. 6.1: A subset of PRINTcipher-48 Sboxes mapping onto itself.
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Now consider an xor-key sk1 of the form

Xor key = 01* *11 *** *** 01* *11 *** *** 01* *11 *** *** 01* *11 *** ***,

and a permutation key with the following restrictions:

Perm. key = 0* 11 ** ** 10 01 ** ** 11 *0 ** ** *0 11 ** **,

where again ∗ denotes an arbitrary value in F2. For those keys the following structural iterative
one round property holds:

Start 00* *10 *** *** 00* *10 *** *** 00* *10 *** *** 00* *10 *** ***

Key xoring 01* *01 *** *** 01* *01 *** *** 01* *01 *** *** 01* *01 *** ***

Lin. layer 00* 11* *** *** 0*0 1*1 *** *** *00 *11 *** *** 00* 11* *** ***

RC 00* 11* *** *** 0*0 1*1 *** *** *00 *11 *** *** 00* 11* *** ***

Perm. layer 00* *11 *** *** 00* *11 *** *** 00* *11 *** *** 00* *11 *** ***

Sbox layer 00* *10 *** *** 00* *10 *** *** 00* *10 *** *** 00* *10 *** ***
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This property holds with probability one if both keys are of the above form. The fraction

of those keys is 2−16 for the XOR key and 2−13 for the permutation key, meaning that the

property is met for a fraction of (2−29 of all keys. In other words, there exist 251 weak keys of

this form.

Thus, one can very efficiently check if a key of the above form is used by encrypting a few

texts of the above form and check if the ciphertext is again of the same form. Given that the

probability for false positives is ≈ 2−16, trial encrypting just a handful of selected plaintexts

will uniquely identify such a weak key. If such a key is found, we do of course immediately

have a distinguisher on PRINTcipher.

Invariant Subspace Description:

Let us briefly rephrase the attack in terms of an invariant subspace attack. For this we fix a

permutation key of the above form. Remember that the inner state at the beginning and the

end of each round was

Start = 00* *10 *** *** 00* *10 *** *** 00* *10 *** *** 00* *10 *** ***.

This means that the relevant subspace U ⊂ F48
2 is defined by

U = {00* *00 *** *** 00* *00 *** *** 00* *00 *** *** 00* *00 *** ***}, (6.1)

and that the affine subspace is defined by any fixed vector d of the form

d = 00* *10 *** *** 00* *10 *** *** 00* *10 *** *** 00* *10 *** ***. (6.2)

Then for any fixed vector c of the form

c = 01* *01 *** *** 01* *01 *** *** 01* *01 *** *** 01* *01 *** ***, (6.3)

and any xor-key k ∈ (U + c+ d), the round function does indeed map U + d onto itself.

6.1.3 Other Attack Profiles

In the following we describe other sets of weak-keys for PRINTcipher-48 and similar ones

for PRINTcipher-96.
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Other weak keys for PRINTcipher-48

As it turns out, there are some more invariant subspaces that also can be used for PRINTcipher-

48. They are all of the form

00* XXX *** 1*1 00* *10 *** *** 00* XXX *** 1*1 00* *10 *** ***,

where an ’X’ marks a bit position where the attacker has to make an arbitrary assignment.

Note that each position can be filled independently of the others. Thus, we have 26 possible

plaintexts that we can work with, each of which targets another class of weak keys.

For each such assignment, the cipher behaves as follows:

Start (1) 00* XXX *** 1*1 00* *10 *** *** 00* XXX *** 1*1 00* *10 *** ***

Key xoring (2) 0X* X01 *** X*1 01* *0X *** *** 0X* 001 *** X*X 01* *0X *** ***

Lin. layer (3) 00* XXX *** X*X 0*0 1*1 *** *** *00 XXX *** 10* 00* 11* *** ***

RC (4) 00* XXX *** X*X 0*0 1*1 *** *** *00 XXX *** 10* 00* 11* *** ***

Perm. layer (5) 00* XXX *** 1*0 00* *11 *** *** 00* XXX *** 1*0 00* *11 *** ***

Sbox layer (6) 00* XXX *** 1*1 00* *10 *** *** 00* XXX *** 1*1 00* *10 *** ***

The behaviour is best understood by traversing the cipher in the inverse direction, i.e. by

starting from the end and then finding the key bits that ensure that all fixed bits in line (1)

match their counterparts in line (6).

Let us start with the output of the Sbox, i.e. line (6), and let the bit positions marked by ’X’

be arbitrarily and independently be fixed to either 0 or 1. Then going backwards through the

Sbox uniquely determines the bits in line (5). We then use a permutation key of the form

Perm. Key = 0* ** ** (00 or 11) 10 01 ** ** 11 ** ** 10 0* 11 ** **

to obtain line (4), noting that 2−13 of all permutation keys meet this property. We then apply

round counter and linear layer to obtain line (2). Now note that line (2) contains 22 bits that

are fixed and that have to match the corresponding bits in line (1). Thus, 22 key bits of the

xoring key are determined, meaning that 2−22 of all xoring keys are suitable for the attack.

Summing up, for each of the 26 possible assignments to the bits marked by ’X’ in line (1) or

(6), a fraction of exactly 2−35 keys are weak, meaning that in total, we have found another

fraction of 2−29 weak keys that can be attacked by the above technique.

Analysis of PRINTcipher-96

As it turns out, the same attack can also be applied to PRINTcipher-96. Again, there are

two types of weak keys. The first type is based on 32 active bits and is met by a fraction of
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2−59 of all keys. The second type is based on 44 active bits and has an additional 12 freely

chosable input bits. Each of the resulting 212 inputs targets a fraction of 2−71 keys, meaning

that this group, too, contains a fraction of 2−59 weak keys in total. The active bits for these

weak keys are given in Table 6.2.

Subset 1 Active input bits for linear layer:
(0 1) (4 5) (12 13) (16 17) (24 25) (28 29) (36 37) (40 41)
(48 49) (52 53) (60 61) (64 65) (72 73) (76 77) (84 85) (88 89)
Active output bits for linear layer:
(0 2) (3 5) (12 13) (15 16) (25 26) (28 29) (36 38) (39 41)
(48 49) (51 52) (61 62) (64 65) (72 74) (75 77) (84 85) (87 88)

Subset 2 Active input bits for linear layer:
(0 1) (3 4 5) (9 11) (12 13) (16 17) (24 25) (27 28 29)
(33 35) (36 37) (40 41) (48 49) (51 52 53) (57 59) (60 61)
(64 65) (72 73) (75 76 77) (81 83) (84 85) (88 89)
Active output bits for linear layer:
(0 2) (3 4 5) (9 10) (12 13) (15 16) (25 26) (27 28 29)
(33 35) (36 38) (39 41) (48 49) (51 52 53) (58 59) (61 62)
(64 65) (72 74) (75 76 77) (81 82) (84 85) (87 88)

Table 6.2: Subsets of active bits for PRINTcipher-96, grouped according to Sboxes

6.1.4 Protecting Against the Attack

The above attack against PRINTcipher is a special case of the general attack described in

the beginning of the section, since the subspace is described by simply fixing some of its bits.

In theory, describing the subspace by a set of linear equations is possible, opening for a wide

range of attacks. The full potential of this generalized attack is yet to be determined.

As for the special case used against PRINTcipher, it is relatively easy to protect the design

against the attack. Note that the list of attack profiles by fixing bits given here is com-

plete, and that all attack profiles fix two of the bits 39-41 (PRINTcipher-48) resp. 87-89

(PRINTcipher-96). Thus, it would suffice to spread the round counter over the last three

Sboxes, e.g. by assigning two counter bits to each Sbox. This would destroy the only attack

profiles available.

We also analyzed the block cipher NOEKEON, which was proposed by Daemen et al. in

2000 [42]. NOEKEON is a 16-round block cipher with a constant round key, making it a

particularly tempting target for the attack. However, as it turns out, the linear mixing layer

of NOEKEON is much more resistant against the above type of attack. Here, the stronger
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round function (necessary for a cipher with only 16 rounds) works to the advantage of the

cipher. As it turns out, even if there was no round counter involved in NOEKEON, the simple

attack described above – i.e. where the subspace is defined by fixing certain bits – could not

be applied. Whether or not the generalized attack has a better chance of succeeding remains

yet to be determined.

6.2 Statistical Saturation Attacks

The attack on PRINTcipher discussed in Section 6.1.2 is clearly strongly related to statistical

saturation attacks described in Chapter 2. In this section, we show that for PRINTcipher

there exist strongly biased linear approximations for any number of rounds, if the key is weak

in the sense of the invariant subspace attack. This result follows using a link between statistical

saturation attacks and multi-dimensional linear attacks (see Chapter 2 or [82]).

6.2.1 On the Choice of the Values of the Fixed Bits

We use the statistical saturation attack as described in Chapter 2 where the encryption function

e : Fr2×Fs2 → Ft2×Fu2 defined in equation (2.8) is restricted to hy : Fs2 → Ft2 defined in equation

(2.9). We now focus on the case where r = t, that is the number of fixed bits is the same as

the number of bits considered at the output.

Assume that we have a cipher ‘e’ that is vulnerable to an invariant subspace attack. As for

statistical saturation attacks, up to a fixed bijective linear transformation before and after the

cipher, we can assume that, for a weak-key, the affine subspace of the form {d}×Fs2 is mapped

to a affine subspace of the form {d} × Fs2. It then follows immediately that (for a weak key)

the function of the restriction hy for y = d is a constant, more precisely

hd(x) = e(1)(d, x) = d (6.4)

For the special choice of the values of the fixed bits the capacity of the probability of the

output distribution is maximal. Hence for a weak key this special fixing of the bits leads to an

optimal statistical saturation attack. Note that Theorem 2.2.4 does not reveal the existence

of such extreme cases, as it only considers the average capacity of the restrictions.

While in an invariant subspace attack, given the subspace, the choice of the coset is crucial, for

statistical saturation attacks the fixed bits are usually assigned with random values. As the

invariant subspace attack on PRINTcipher does not imply that PRINTcipher is in general
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vulnerable to a statistical saturation attack, it does not come as a surprise that the experiments

in [78] did not reveal any weakness of PRINTcipher with respect to those attacks.

6.2.2 On the Existence of Highly Biased Approximations

The following corollary follows from Identity (2.10).

Corollary 6.2.1. Assume an n-bit block cipher Ek is vulnerable to an invariant subspace

attack, that is there exist a subspace U , a constant d and keys k such that

Ek(U + d) = U + d.

Then, for those keys, there exist linear approximations with a correlation c such that

c ≥ 2dim(U)−n − 22(dim(U)−n).

Proof. Let py be the the probability distribution of the r output bits of hy and let also pd be

the the probability distribution of the r output bits of hd. As defined by equation (6.4), hd is

a constant function. Thus Cap(pd) = 2r − 1 and furthermore

∑
y∈Fr

2

Cap(py) ≥ Cap(pd) = 2r − 1.

Considering Identity (2.10) it follows that

∑
a∈Fr

2 ×{0}

b∈Ft
2 ×{0},b6=0

(ê(a, b))2 ≥ 22n(1− 2−r)

Lower bounding the maximal value by the average (and recalling that r = t), we compute

max
a,b 6=0

(ê(a, b))2 ≥ 2−2r ∑
a∈Fr

2 ×{0}

b∈Ft
2 ×{0},b6=0

(ê(a, b))2 ≥ 22n−2r(1− 2−r)

Thus there exists at least one Fourier coefficient such that

|ê(a, b)| ≥ 2n−r
√

1− 2−r ≥ 2n−r − 2n−2r

Applying identity (2.1) and remembering that r = n− dimU , the theorem follows.
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Clearly, this Corollary is only interesting for the case where dim(U) > n
2 as the existence of

the stated approximations otherwise is trivial. For the case of PRINTcipher-48 the following

Corollary holds.

Corollary 6.2.2. Given a weak key for any round r ≤ 48 there exists at least one linear

approximation for PRINTcipher-48 with correlation at least 2−16 − 2−32.

Understanding the Large Correlations

Here we summarize the analysis described in [2] about the above large correlations which are

caused by the invariant subspace. One can see that the linear approximations with large cor-

relations in PRINTcipher have input masks α and output masks β that lie in the orthogonal

subspace of U , i.e. α, β ∈ U⊥. This is because the orthogonal of the subspace U defined in

6.1,

U⊥ = {**0 0** 000 000 **0 0** 000 000 **0 0** 000 000 **0 0** 000 000}

corresponds to the plaintext and ciphertext bits that are fixed in the invariant subspace.

Thus to study the large correlations of these linear approximations, the work in [2] split their

linear hull represented by Equation (2.2) into two sums where the first sum corresponds to

the linear trails with intermediate masks residing in U⊥ and the second sum corresponds to

the other linear trails with intermediate masks outside U⊥ for at least one round. Thus for an

iterated block cipher F ,

CF (α, β) =
∑

αi∈U⊥
(−1)si⊕di |Ci|+

∑
αi /∈U⊥

(−1)si⊕di |Ci| (6.5)

Now, let Mi be the correlation matrix of the ith round function of an iterated block cipher with

identical round keys and small round constants. Let A be the submatrix of Mi whose entries

correspond to input and output masks in U⊥ and are not affected by the round constants. Note

that since the round constants do not affect the entries of A, so we have the same submatrix

for each round in PRINTcipher. Thus, Ar describes exactly the contribution to the linear

hull from the linear trails with intermediate masks residing in U⊥. If the entries of Ar have a

large magnitude, then the corresponding elements of the product MrMr−1 · · ·M1 have more

or less the same magnitude, unless the contributions from the second sum cancel those from

the first sum.

As the asymptotic behaviour of Ar is related to the spectrum of A [29, 94], the work in [2]

studied the eigenvalues of A. Define v = (vα)α∈U⊥ where vα = (−1)〈d,α〉. It was shown in [2]
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that vT is an eigenvector with eigenvalue 1 iff F (U + d) = U + d where F is an invertible

vectorial Boolean function. Moreover, it was shown that in the case where there is no other

non-trivial1 eigenvector with eigenvalue 1, the sequence Ar converges to (2dim (U⊥) − 1)−1vT v

as r → ∞. Thus in equation 6.5, if the contribution to CF (α, β) from the second sum are

negligible, then all trails with nonzero α, β ∈ U⊥ have absolute correlations ≈ 2− dim (U⊥).

Furthermore, experiments were performed in [2] to verify that PRINTcipher behaves accord-

ing to the above stated results. The submatrix A of PRINTcipher-48 was constructed ac-

cording to the class of weak keys described in Section 6.1.2 and it was verified that AvT = vT .

Also 16 linear approximations with absolute correlations approximately equal to 2−16 were

found. For more information about these results, we refer the reader to [2, 5].

6.3 Conclusions

We have presented a new attack against iterative block ciphers named invariant subspace

attack and demonstrated its validity by breaking PRINTcipher for a significant fraction of

its keys. The presented invariant subspace attack verifies that there exist 252 weak keys of

the 280 possible keys for PRINTcipher-48 and 2102 weak keys of the 2160 possible keys of

PRINTcipher-96. Note that as pointed in Chapter 3 that all the classes of weak keys that

lead to invariant subspaces have been identified in [30].

Moreover, we have shown that the invariant subspace attack has relationships to other classes

of attacks as in multi-dimensional attack linear attack and statistical saturation attack. This

link shows that for PRINTcipher there are strongly biased linear approximations with ab-

solute correlation at least 2−16 for any number of rounds, if a weak key is chosen. We have

also given a brief description about the work in [2] which mainly explains why the invariant

subspace causes these strongly biased linear approximations.

1Note that (1, 0, 0, . . . , 0)T is an eigenvector of A with eigenvalue 1.
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Chapter 7

Cryptanalysis of the Lightweight
Cipher A2U2

In this chapter, we present a cryptanalysis of the stream cipher A2U2 described in Chapter

3. We start by describing some useful properties used to attack the cipher (Section 7.1) and

by showing how to repair the nonfunctional chosen plaintext attack on A2U2 described in

Chapter 3 (See Section 3.3.3), yielding an attack for the chosen plaintext case that requires

less than a second running time and very little data (Section 7.2).

We then proceed to discuss the more challenging class of known-plaintext attacks. In Sec-

tion 7.3 we describe a guess-and-determine attack that requires guessing 249 inner state bits

in order to retrieve the starting state.

In addition, we present a chosen-IV attack that makes use of the special key/IV setup of the

cipher. A special design feature of A2U2 is that the number of initialization rounds varies and

depends on an internal counter. The number of rounds varies from 9 to 126. In Section 7.4, we

propose a differential-style attack which first enables us to find the 5-bit counter key. Moreover,

we present an attack that recovers the master key in the case that only 9 initialization rounds

are used. The latter attack requires only 238 computational steps.

Finally, in Section 7.5, we describe urgent changes that should be done to the cipher design

in order to avoid the above attacks. We also give some further research directions, both for

cryptanalysis and improvement of the cipher.

In this chapter, we use the notations and algebraic equations described previously in Chapter

3 (See Section 3.1.3).

7.1 Useful Properties Used in the Attacks

In the following, we point out some properties of the cipher that will be used by our attacks.
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Known Counter: Since the counter has the all-one state after initialization, the attacker

can compute all successive counter states and does know the bit Ct for any t ≥ 0. This

simplifies significantly some of the algebraic equations described in Chapter 3 (See Section

3.1.3).

Chosen Randomization Vector: Instead of using a nonce that is chosen solely by the

encrypting party as is common practice with stream ciphers, the random vector used for

initialization is generated in collaboration between sender and receiver. According to the

design specification of the cipher [46], both sender and receiver each choose a 32-bit random

number which is then sent over the communication channel. Both inputs are then combined by

xor into the actual randomization vector. Note that this procedure enables an active attacker

to choose the randomization vector: He waits for the legitimate party’s input and chooses

his own such that the xor sum will be the desired number. In particular, he can introduce

arbitrary differences between randomization vectors and even force the encryption device to

use the same randomization vector twice, thus violating an important design principle for

stream ciphers.

Chosen Plaintext: Due to the unusual output generation, a chosen plaintext attack is

more powerful than a known plaintext attack. This is another difference to traditional stream

cipher designs, where no extra information is gained if the attacker is allowed to choose the

plaintext himself.

7.2 A Chosen Plaintext Attack

7.2.1 A Leak in the Output Function

In the following, we will demonstrate a leak in the output function that can even be used for

general known-plaintext attacks and will then expand this weakness into a chosen plaintext

attack that reminds of the one described in Chapter 3 (See Section 3.3.3) but is actually

functional.

Known plaintext: Assume that the inner sequences At and Bt are statistically close to

random. Then in particular, Pr(At = 0) = 1
2 for all t. We can now consider two cases for the

output function:

102



� If At = 0, then Yt = Bt + Ct. Since we know Ct, we can rewrite this as Bt = Yt + Ct.

For At = 0, this is always true.

� If At = 1, we have Yt = Bt + Pσ(t), with Pσ(t) unknown. If we assume that Pσ(t) = Ct

with probability 1
2 ,1 then the equation Bt = Yt + Ct is also true with probability 1

2 .

In total, the equation Bt = Yt + Ct is thus met with probability 1
2 +

(
1
2

)2
= 3

4 , i.e. by

observing the keystream and knowing the behaviour of the counter LFSR, we can predict the

inner stream (B0, B1 . . .) with probability 3
4 per bit.

Chosen plaintext: Note that when we can choose the plaintext, we can increase the

probability of Pσ(t) = Ct and thus the probability of the equation Bt = Yt +Ct being correct.

As an example, consider the first 5 output bits of the LFSR, which are (1, 0, 0, 0, 0). Thus, if

we choose a plaintext (1, 0, 0, 0, 0), then Pσ(t) = Ct is true with probability 1 for the first bit,

1− 1
2 for the second, 1− 1

4 for the third, 1− 1
8 for the fourth, and 1− 1

16 for the fifth bit. Thus,

we can predict the inner state bits (B0, . . . , B4) with probabilities 1, 3
4 ,

7
8 ,

15
16 ,

31
32 .

7.2.2 The Attack

The most useful plaintexts for this kind of analysis seem to be (0, 0, ...) and (1, 1, ...), since

for them, the attacker knows exactly the bit Pσ(t) for every time slot t. Let us start with the

all-zero sequence. The attacker knows that the plaintext sequence (Pσ(t))t≥0 consists only of

zeros. He now looks at all time slots t with Ct = 0. For those time slots, it holds that Bt = Yt,

independent of the choice of At. Thus, he learns about half of the bits of the sequence B.

The remaining bits can be learned using the all-one sequence. In this case, in all positions

where Ct = 1, the attacker learns Bt = Yt + 1, also independent of At. Thus, he has fully

reconstructed the sequence B.

What is more, he can also use this new information to learn the sequence A as well. For every

time slot, he picks the ciphertext bit Yt corresponding to the plaintext bit Pσ(t) 6= Ct. If it

holds that Bt = Yt + Ct, then At = 0, otherwise At = 1.

After this step, the attacker knows the sequences generated by all three registers A, B, and C.

The remaining attack proceeds as follows. Knowing the sequences A, B and C the attacker

can determine the values ht because

ht = Bt−9 +Bt−8Bt−7 +Bt−6 +Bt−3 +At + 1.
1Note that if the probability for Pσ(t) = Ct significantly differs from 1

2 , then the success probabilities
for the rest of the attack are even better than claimed.
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Furthermore, it holds that

ht = MUXCt−5(St0, St1) ·MUXCt−1(St4, At−2) + MUXCt−3(St2, St3) + 1,

where Ct−i for i = 1, 3, 5 and At−2 are known. This equation is at most quadratic and in

about half of the cases (when Ct−1 = 1) it is linear. Determining 56 values of ht yields a fully

determined quadratic Boolean equation system, which can be solved by e.g., using Gröbner

basis techniques. As about half of the equation are linear, a linear equation system can be

obtained after determining 112 values of ht. After 11 clockings of the algorithm the key

register is rotated once and the key bits are reused, thus it can happen that the same equation

is generated twice. However, experiments showed that this does not happen frequently, thus

we expect that observing around 120 values of ht is sufficient to generate a fully determined

linear equation systems in 56 unknowns.

Effort: The attack requires two chosen plaintexts of length around 60 bits which are en-

crypted using the same key and initialization vector in order to recover secret key bits (exclud-

ing the 5 bits which are used to initialize the counter). Note that a 60 bit plaintext corresponds

to a ciphertext of length 120 bit on average. The main computational effort consists in solving

a linear Boolean equation system which can be done in well under a 1 second. Thus, in the

chosen plaintext scenario, the cipher must be considered as completely broken.

7.3 Guess-and-Determine Attack

In this section we discuss a known plaintext attack which is in general a more likely scenario

than a chosen plaintext attack. When we know but are not allowed to choose the plaintext

we cannot use the same trick as in Section 7.2 to determine the sequence (Bt)t≥0. We cannot

simply calculate this sequence for a given plaintext/ciphertext pair because we do not know

which bits of the ciphertext correspond to the plaintext bits. This is controlled by register A.

The idea of this attack is to guess the sequence of (At)t≥0, meaning we guess at which positions

of the ciphertext a plaintext bit was used. These guesses are used to determine additional bits

of register B and then later on the value of ht. As we know the value of the counter at any

time during the encryption process, given ht and At−2 we obtain a Boolean equation in the

key bits which is at most quadratic and contains at most three variables. If we are able to

collect sufficiently many of those equations we will be able to recover the key bits by solving

the equation system.

We denote by A0 the content of the last cell of the first NFSR at the time when the ciphertext
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generation starts. The attack is divided into three parts of guessing bits.

In the first part we guess the value At for t = 0, . . . , 8 for 9 consecutive clockings of the

algorithms. Depending on our guess we know if the counter bit or a plaintext bit was used to

generate the corresponding ciphertext bit and we can determine the value of Bt for t = 0, . . . , 8.

After guessing 9 bits we know the full second NFSR and about the lower half of the first NFSR.

In the next part we continue guessing the value of At for t = 9, . . . , 16 and determine the

value of Bt for t = 9, . . . , 16. Additionally, we obtain the value of ht for t = 9, . . . , 16 and the

corresponding Boolean equation in the key bits, because it holds that

ht := At +Bt−9 +Bt−8Bt−7 +Bt−6 +Bt−3 + 1, (7.1)

the full register B is known and we guessed the value of At. After the second part of the

attack both registers are known and we have already obtained 8 equations.

In the third part we want to determine the value of ht for further clockings of the cipher. The

full register A is known and in order to update register B only bits of register A are used. This

means we can update register B and know the value which was use to encrypt next ciphertext

bit (bit 17, 18 etc). Furthermore, we know the counter value Ct and the plaintext bit p that

might have been used (according to our guess). As mentioned before we want to determine the

value of ht and obtain the corresponding equation. Using equation (7.1) we need to determine

At in order to obtain ht. Depending on the values of counter Ct and the value of the plaintext

bit Pσ(t) we can either calculate the value of At or we have to guess it. The output generation

can be presented as a quadratic equation

Yt +Bt + Ct = At(Ct + Pσ(t)). (7.2)

This means if Ct 6= Pσ(t) and thus Ct+Pσ(t) = 1 we can simply use Equation (7.2) to determine

the value of At. However, if Ct = Pσ(t) and thus Ct + Pσ(t) = 0, Equation (7.2) does not yield

any information about At and we have to guess the value of At as before.

Effort: We need to collect at least 56 equations to determine a unique solution in 56 key

variables. In the first two parts of the attack we guess 17 bits and obtain 8 equations. We

expect that we have to guess every second value for At in the third part of the attack. Thus,

we expect that we have to guess at least 24 further bits in the third part of the attack in order

to obtain a fully determined equation system. This leads to a complexity of at least 241.

There are two factors that increase the attack complexity. Firstly, the equation system is non-

linear and therefore it might not have a unique solution even though it is fully determined.
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However, it is often sufficient to add a few extra equations to get a unique solution. This will

slightly raise the complexity of the attack.

Secondly, the key register is rotated once after 11 clockings of the algorithm and thus key

bits are reused. This property will on the one hand increase the complexity of the attack for

the correct guess but on the other hand enable us to discard wrong guesses in an early stage.

After producing 11 ciphertext bits the key register has been rotated once, that means the key

bits will be reused when generating more equations. This leads to rounds where we guess or

determine the value of At but do not get a new equation, thus do not gain extra information

about the key. This is especially true for the correct guess and means that it is necessary to

guess extra bits in order to obtain a fully determined system. For a wrong guess however this

might be to our advantage because it is very likely that when the same polynomial is generated

the RHS differs. Thus, we get contradicting equations and can abort the guess.

In general, for a wrong guess the equation system will not have a solution. The inconsistency

might be very obvious as mentioned above, but it might also be necessary to solve a non-linear

Boolean equation system. Therefore, we have to make a trade-off how often we want to check

if the system is still solvable.

An implementation of the attack is necessary in order to provide a better estimate of the attack

complexity. Simulations showed that after guessing 47 bits we obtain a set with 57 equations

on average. When testing these equation systems for solvability around 5% have a non-empty

solution set. This means 5% of our guesses survive. Guessing 6 additional bits yields equation

systems containing 70.7 equations on average and we expect that only the correct guess or

very few guesses survive and that the equation system corresponding to the right guess will

have a unique solution. The estimated complexity for this approach is 249 bit guesses. As we

in the worst case have to solve an non-linear equation system for each guess we cannot ignore

the costs for this step. The costs for solving a non-linear equation system by for example using

Gröbner bases are hard to estimate as the problem of solving a random non-linear equation

system is NP-hard and thus the running time is equivalent to a brute force search in the worst

case. However, we deal with fairly small equation systems and experiments indicate that these

equation systems are solvable in a fraction of seconds using Gröbner basis algorithms and that

the costs are comparable to about four encryptions. Furthermore, the number of Gröbner

basis applications can be reduced by implementing techniques for checking for inconsistencies

in the equation system such as checking if the subsystem of linear equations is solvable etc.
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7.4 Targeting the Low Number of Initialization Rounds

A2U2 has a secret number of initialization rounds. There are 32 possible choices for the

number of initialization rounds that varies from 9 to 126 where each choice is specified by

the 5 LSB of the tag’s random number, the reader’s random number and the 5-bit counter

key. In this section, we propose two attacks on A2U2 when 9 initialization rounds are used.

The first attack recovers the 5-bit counter key using 214 different state pairs with a specified

difference, while the second attack recovers 32 secret key bits and 6 subkey bits using 8

plaintext/ciphertext pairs with a time complexity 238. Both of the attacks use known plaintexts

and chosen IVs.

7.4.1 Recovering the 5-bit Counter Key

The following attack requires for each of the possible 32 initializations, a certain number of

state pairs (chosen IVs) with a good difference (sparse characteristic). Under these states we

use the ciphertext of a single bit of plaintext that is equal to the first bit of the counter, C0,

at the time when the encryption starts (known plaintext). Then we can distinguish the state

pairs corresponding to 9 rounds of initialization by observing a bias in the difference of the

first bit of the corresponding ciphertext pairs, ∆(Y0), which is equal to the difference ∆(B0).

Experiments show that Pr(∆(B0) = 0) > 0.7 for 9 initialization rounds when 29 state pairs

with differences ∆(A) = 10000000000000000 and ∆(B) = 100000100 are used. The bias is

smaller when more initialization rounds are applied. We observe the strong bias in B0 for 9

rounds because in only 9 rounds the difference cannot propagate through state and does not

spread out sufficiently. After having distinguished the 29 state pairs corresponding to 9 rounds

of initialization, we can consequently find the 5-bit counter key.

7.4.2 Recovering the Master Key Bits

The following attack targets plaintext/ciphertext generated using 9 rounds of initialization

(can be obtained using chosen IVs) and exploits the key scheduling used to generate the

subkey bits, ht. The attacker starts by guessing the 26 master key bits used in initializing

registers A and B and then at each round he guesses one subkey bit if Ct−1 = 0, or two master

key bits if Ct−1 = 1 (since At−2 will then be used to generate ht) or no bits when all the key

bits involved in the generation of the round subkey bit are from the 26 master key bits used

in initializing registers A and B.
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Table 7.1: List of the master key bits used in the subkey generation of each round,
together with the counter value and the number of required guesses. r ≡ round no, G ≡
number of subkey/key bits that are guessed.

r St
0 St

1 St
2 St

3 St
4 Ct−1 G

0 26 27 28 29 30 0 1
1 31 32 33 34 35 0 1
2 36 37 38 39 40 0 1
3 41 42 43 44 45 1 2
4 46 47 48 49 50 1 2
5 51 52 53 54 55 1 2
6 0 1 2 3 4 1 0
7 5 6 7 8 9 1 0
8 10 11 12 13 14 1 0
9 15 16 17 18 19 1 0
10 20 21 22 23 24 0 0
11 25 26 27 28 29 0 1
12 30 31 32 33 34 0 1
13 35 36 37 38 39 0 1

The cipher is initialized using 9 rounds and then a 5-bit plaintext is encrypted, so in total the

cipher runs for 14 rounds. Without loss of generality we assume that the starting key position

is 0, so the key bits at positions 0 to 25 are used in initializing registers A and B. Table 7.1

shows the key bits positions used from round 0 to round 13, the value of Ct−1 and the number

of guessed subkey/key bits. The table also shows that we have to guess 6 subkey bits and 6

master key bits plus the 26 master key bits used in initializing the registers. Note that when

6 ≤ r ≤ 10, the number of guesses G is zero regardless of the value of Ct−1 as all the five

master key bits involved in generating the corresponding round subkeys belong to the master

key bits at positions 0 to 24 (as shown in Table 7.1) which are part of the 26 master key bits

which we first guess to initialize registers A and B.

To recover 32 master key bits and 6 subkey bits using plaintexts of length 5-bit, we need only

d38
5 e = 8 plaintext/ciphertext pairs of length 5-bit to find the right key guess. The remaining

24 master key bits can be recovered using a brute force search. Thus, the total complexity of

the attack is in the order of 238. In order for the above attack to work we need to find only 8

plaintext/ciphertext pairs whose initial state pairs are initialized with position 0 as a starting

key position and are generated using 9 initialization rounds which we can easily find using the

5-bit counter key recovered in the previous attack.
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7.5 Final Remarks

7.5.1 Necessary Changes & Possible Improvements

In this section, we summarize the weaknesses of the published version of A2U2 [46] and propose

some possible improvements that would prevent the attacks described in this paper. However,

these possible improvements may be prone to other types of attacks, and a full re-evaluation

of the cipher would need to be performed in order to assess the strenghts of these potential

changes. The following weaknesses make the above attacks possible:

� The fact that the adversary knows the counter state at every instant facilitates crypt-

analysis. In particular, it significantly simplifies all algebraic expressions in the cipher,

bringing the algebraic degree down to 2 or even 1. Note that to fix this problem, a com-

pletely new mechanism for key/IV setup has to be developed. In addition, the size of

the counter register has to be increased significantly, since with the current register size,

the adversary can just guess the counter starting state which only contributes a factor

of 27 to the attack complexity. Furthermore, the potentially low number of nine clock

cycles to initialize the cipher is not sufficient to ensure a full mixing of the IV bits inside

the registers, giving the attacker some valuable information regarding the untouched

bits. There are several possible and complementary ways to fix these weaknesses:

1. In order to increase the number of rounds during initialization, the counter can be

set to an all-ones sequence and run for 127 clock cycles (27− 1) until it reaches an

all-ones sequence again. This would ensure a proper mixing of both registers bits.

2. At the end of the initialization phase, the counter value could be replaced by the 7

LSB of the secret key, reserved for this sole purpose. The 2 LSB that are fixed in

the original cipher description for initialization would no longer be required since

this new operation would occur after the 127 initialization rounds. This would

prevent an attacker from knowing the exact sequence of bits generated by the

counter.

3. However, this second measure does not solve the problem that the attacker just can

guess the initial 7 bits of the counter. As mentioned above, increasing the length

of the register would solve this issue, but it would be at the expense of numerous

additional gates (which contradicts the design principles of this cipher). A more

reasonable solution, in terms of gates, would be to XOR one (or several) external

bit(s) to the feedback function of the register. These bits could for example be the

output of the key scheduling mechanism or a bit from one of the nonlinear registers.
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In this way, the length of the register period would be significantly increased at a

very low cost.

� The original design mixes random values both from the reader and the tag to avoid replay

and man-in-the-middle attacks [46], which are of common concern in RFID systems.

However, the fact that the adversary has an influence (up to total control) on the IV

is a serious weakness for a stream cipher. In particular, it must not be possible for

the attacker to repeat the IV (nonce-respecting adversary [100]). Thus, it is common

practice for stream ciphers that the sender chooses the IV, e.g. as a counter or random

value. This design criterion should be adhered to. The registers’ IVs may be set as an

XOR operation of the tag’s pseudo-random number and the secret key.

� The key size itself should be increased, since a total key length of 56 bit is not strong

enough for modern standards. Due to the structure of the key scheduling mechanism,

the key size needs to be relatively prime with 5 in order to obtain the longest rotation

possible before reusing the same 5 key-bits. In addition, 7 bits need to be reserved for

the counter (after initialization). A minimum of 88 bits (81 + 7) would seem to be a

more reasonable choice. Given that the primary target of the printed tag encryption

protocol is to encrypt an EPC of 96 bits [49], having a key size longer than this value

would be at the compromise of the area available for the cryptosystem.

As mentioned earlier, when these weaknesses are fixed, a full re-evaluation of the cipher is

necessary. Note that in particular, the output unit leaks information (in form of a correlation)

about the inner state. Whether or not this information can be used for an attack depends

on the inner workings of the cipher. No simple answers can be given here without a full

specification of the new design.

Even though having short-size registers and building blocks will necessarily affect the strengh

of a cipher, design decisions have to keep in mind the need of designing a cipher small enough

to be integrated in printed electronics, where every additional gate counts2. This particular

target may have some practical sides regarding the amount of data one can collect. According

to the specifications of the ISO 14443 Standard [68], with a communication session of 400ms

between tag and reader, it would take more than 5 years to collect 236 bits of ciphertext from a

single tag, and approximately 6 months to collect 239 bits of ciphertext from 100 tags using the

same key. This number could be a limiting factor to break an improved version of A2U2, where

no practical attack could be performed with less than 239 bits of known plaintext/ciphertext.

2Every additional register in the design implies an increase of (at least) 6.25 GE. Increasing the size
of a static key (which is the case for passive RFID tags) comes at a lower cost of 1GE/bit. Moreover,
it is often assumed that some space is reserevd for the key inside the device, therefore coming at
practically no additional cost
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7.5.2 Conclusion

In this chapter we presented several attacks on the lightweight stream cipher A2U2 which all

constitute practical breaks of the cipher.

A2U2 is designed for IC printing. To keep the area small, short registers for the inner state

are used. A new output generator has been developed to increase the security of the cipher.

This output function works similar to the shrinking generator but it overcomes the problem

of the irregular output of ciphertext bits by outputting ‘dummy’ ciphertext bits such that

attacker does not know at which positions of the ciphertext plaintext bits were used.

We show that using only two chosen plaintexts, the cipher can be broken in a second by first

recovering the sequence which is used to produce the ciphertext and afterwards determine the

sequence which controls when plaintext bits are used.

Furthermore, we propose a guess-and-determine attack. We guess the positions where the

plaintext bits are used and set up a non-linear equation system which can be solved, e.g., using

Gröbner basis techniques. With this approach we can determine the key with a complexity of

249 guesses using a known plaintext of length less than a hundred bits.

We also investigated the possibilities of a chosen-IV attack. Choosing the IV allows us to

introduce a difference in the initial state of the register and keeping the counter constant at

the same time. Using a differential-style attack, we can identify a bias in the difference of

the first ciphertext bit when only 9 initialization rounds are used. Thus, we can recover the

counter.

When only 9 rounds of initialization are used, we can recover the master key using only 238

computational steps. We find 32 master key bits by guessing depending on the counter either

master key bits or the auxiliary value ht. The remaining master key bits can be found by

exhaustive search.

We conclude our analysis by pointing out some of the most severe weaknesses of the cipher.

The biggest and most obvious weakness is that the counter value at the beginning of the

encryption is known. However, any change made to the cipher demands a re-analysis of the

security. In the current state the cipher can be considered as badly broken.
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Chapter 8

Conclusion

In this thesis, we evaluated the security of some lightweight ciphers. Specifically, we studied the

security of PRESENT-like ciphers, namely the block cipher PRESENT, the core permutation

of the hash function SPONGENT which can be seen as a block cipher with a zero round key

and the block cipher PRINTcipher. We also analyzed the security of the stream cipher

A2U2. In the following we summarize the results of this thesis and suggest some possible

future work.

An approach for estimating the probability of low-weight differential and linear approximations

in PRESENT-like ciphers has been provided in Chapter 4. This approach could also be used

for any cipher allowing low-weight differential and linear characteristics. The approach used

sparse submatrix of the correlation matrix with input and output masks having Hamming

weight at most 4 to find better linear approximations in SPONGENT and PRESENT.

One possible future work could be to combine this approach with the branch and bound

algorithm in order to add the good probabilities that might come from differential or linear

characteristics containing intermediate characteristics with Hamming weight more than 4.

Another possible future work could be to use parallel computing to construct matrices with

input and output entries with Hamming weight more than 4 to see whether this would improve

the linear attacks on PRESENT. Other possible improvements to speed up the submatrix

construction when considering input and output entries with Hamming weight more than 4

could be considering only calculating the correlations of those inputs which activate at most

2 Sboxes in the submatrix while setting the correlations of the other inputs to zero.

An interesting design topic could be to fix the PRESENT-like involution cipher PUFFIN

– which is not secure against both differential and linear cryptanalysis [20, 82] – by finding

the right combination of Sbox and bitwise permutation where both of them are involution

that is resistant against differential and linear cryptanalysis for a number of rounds that is

equivalent to the number of rounds used by PRESENT. It would be interesting to see if such

a combination exists as it was shown in [53] that there is no Sbox with involution satisfying

the PRESENT Sbox criteria and it was also shown in [82] that there is no permutation with

involution satisfying the PRESENT permutation criteria – that is being optimal in the sense

112



that full dependency is achieved in a minimum number of rounds. Note that this topic was

previously proposed in [20]. We believe that the submatrix approach would speed up the

search for the right combination of Sbox and permutation.

In Chapter 4, we also studied the effect of key scheduling on PRESENT-like ciphers. The

main result of this study is in showing that the distribution of linear approximations with

input and output masks in PRESENT with identical round keys has a larger variance than

those in PRESENT with the standard key scheduling of PRESENT (or independent round

keys). This shows that a PRESENT variant with identical round keys is less secure against

linear cryptanalysis than PRESENT with the standard key scheduling of PRESENT (or

independent round keys). More precisely, the fraction of keys with a squared correlation

larger than 2−53 is 33.7% in the case of identical round-keys but only 1.1% in the case of the

standard PRESENT key-scheduling. One possible future work is to study the distribution

of linear approximations with input and output masks with Hamming weight more than one

in PRESENT with identical round keys and see whether they would have a larger variance

compared to input and output masks with weight one.

In Chapter 5, we showed how to mount a differential attack on reduced rounds of PRINT-

cipher which uses a key dependent layer that seems to complicate differential attacks. One

of the two proposed differential attacks recovers the key dependent permutation layer of an

r-round PRINTcipher by computing the r-th root of a permutation. The chapter also shows

that a secure authentication protocol based on the many r-th roots of a permutation could

be designed. As pointed previously, we believe that finding a suitable mixing function for the

challenges and the secret key used in the authentication protocol beside a hardware imple-

mentation for this protocol are two interesting topics for future work.

In Chapter 6, we presented the invariant subspace attack and shows it relation to the sta-

tistical saturation attacks. The invariant subspace attack was successful on the full round

PRINTcipher and it found two classes of weak keys. Later the whole classes of weak keys

in PRINTcipher was found.

In Chapter 7, we presented several attacks against the stream cipher A2U2. Using two chosen

plaintexts we showed that the cipher can be broken in a second. A guess-and-determine known

plaintext attack was proposed. We proposed two attacks that exploit the use of low number

of initialization rounds. We also pointed out some possible improvements that would make

the cipher resistant against the proposed attacks.
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