2,783 research outputs found

    Terahertz wireless communication through atmospheric atmospheric turbulence and rain

    Get PDF
    This dissertation focusses on terahertz (THz) wireless communication technology in different weather conditions. The performance of the communication links is mainly studied under propagation through atmospheric turbulence and rain. However, as real outdoor weather conditions are temporally and spatially varying, it is difficult to obtain reproducible atmospheric conditions to verify results of independent measurements making it a challenge to measure and analyze the impact of outdoor atmospheric weather on communication links. Consequently, dedicated indoor weather chambers are designed to produce controllable weather conditions to emulate the real outdoor weather as closely as possible. To emulate turbulent air conditions, an enclosed chamber is developed into which air with controllable airspeeds and temperatures are introduced to generate a variety of atmospheric turbulence for beam propagation. To emulate varying rain conditions, an enclosed chamber is built in which pressurized air forces drops of water through an array of 30 gauge needles. In order to study and compare propagation features of THz links with infrared (IR) links under identical weather conditions, a THz and IR communications lab setup with a maximum data rate of 2.5 Gb/s at 625 GHz carrier frequency and 1.5 μm wavelength, are developed. A usual non return-to-zero (NRZ) format is applied to modulate the IR channel but a duobinary coding technique is used for driving the multiplier chain-based 625 GHz source, which enables signaling at high data rate and higher output power. The power and bit-error rate (BER) on the receiver side are measured, which can be used to analyze the signal performance. To analyze the phase change in the turbulence chamber due to the refractive index change induced by turbulence, a Mach-Zehnder Interferometer with He-Ne laser at 632.8nm is developed. In the same weather conditions, the impact on THz in comparison with IR link is not equivalent due to the spectral dependence on atmospheric turbulence and rain. In the experiment, after THz (625 GHz) and IR (1.5 μm) beams propagate through the same condition, performance of both channels is analyzed and compared. Kolmogrov theory is employed to simulate the atmospheric turbulence which leads to attenuation of THz and IR signals. Mie scattering theory is employed to simulate the attenuation of THz and IR beams due to rain. Under identical turbulence conditions, THz links are superior to IR links. However, the performance of THz and IR links are comparable under identical rain conditions

    Experimental Investigation Of Ultrawideband Wireless Systems: Waveform Generation, Propagation Estimation, And Dispersion Compensation

    Get PDF
    Ultrawideband (UWB) is an emerging technology for the future high-speed wireless communication systems. Although this technology offers several unique advantages like robustness to fading, large channel capacity and strong anti-jamming ability, there are a number of practical challenges which are topics of current research. One key challenge is the increased multipath dispersion which results because of the fine temporal resolution. The received response consists of different components, which have certain delays and attenuations due to the paths they took in their propagation from the transmitter to the receiver. Although such challenges have been investigated to some extent, they have not been fully explored in connection with sophisticated transmit beamforming techniques in realistic multipath environments. The work presented here spans three main aspects of UWB systems including waveform generation, propagation estimation, and dispersion compensation. We assess the accuracy of the measured impulse responses extracted from the spread spectrum channel sounding over a frequency band spanning 2-12 GHz. Based on the measured responses, different transmit beamforming techniques are investigated to achieve high-speed data transmission in rich multipath channels. We extend our work to multiple antenna systems and implement the first experimental test-bed to investigate practical challenges such as imperfect channel estimation or coherency between the multiple transmitters over the full UWB band. Finally, we introduce a new microwave photonic arbitrary waveform generation technique to demonstrate the first optical-wireless transmitter system for both characterizing channel dispersion and generating predistorted waveforms to achieve spatio-temporal focusing through the multipath channels

    Remote Sensing

    Get PDF
    This dual conception of remote sensing brought us to the idea of preparing two different books; in addition to the first book which displays recent advances in remote sensing applications, this book is devoted to new techniques for data processing, sensors and platforms. We do not intend this book to cover all aspects of remote sensing techniques and platforms, since it would be an impossible task for a single volume. Instead, we have collected a number of high-quality, original and representative contributions in those areas

    Enabling Technology in Optical Fiber Communications: From Device, System to Networking

    Get PDF
    This book explores the enabling technology in optical fiber communications. It focuses on the state-of-the-art advances from fundamental theories, devices, and subsystems to networking applications as well as future perspectives of optical fiber communications. The topics cover include integrated photonics, fiber optics, fiber and free-space optical communications, and optical networking

    Workshop on Smart Sensors - Instrumentation and Measurement: Program

    Get PDF
    On 18-19 February, the School of Engineering successfully ran a two-day workshop on Smart Sensors - Instrumentation and Measurement. Associate Professor Rainer Künnemeyer organised the event on behalf of the IEEE Instrumentation and Measurement Society, New Zealand Chapter. Over 60 delegates attended and appreciated the 34 presentations which covered a wide range of topics related to sensors, sensor networks and instrumentation. There was substantial interest and support from local industry and crown research institutes

    Emerging technologies for the non-invasive characterization of physical-mechanical properties of tablets

    Get PDF
    The density, porosity, breaking force, viscoelastic properties, and the presence or absence of any structural defects or irregularities are important physical-mechanical quality attributes of popular solid dosage forms like tablets. The irregularities associated with these attributes may influence the drug product functionality. Thus, an accurate and efficient characterization of these properties is critical for successful development and manufacturing of a robust tablets. These properties are mainly analyzed and monitored with traditional pharmacopeial and non-pharmacopeial methods. Such methods are associated with several challenges such as lack of spatial resolution, efficiency, or sample-sparing attributes. Recent advances in technology, design, instrumentation, and software have led to the emergence of newer techniques for non-invasive characterization of physical-mechanical properties of tablets. These techniques include near infrared spectroscopy, Raman spectroscopy, X-ray microtomography, nuclear magnetic resonance (NMR) imaging, terahertz pulsed imaging, laser-induced breakdown spectroscopy, and various acoustic- and thermal-based techniques. Such state-of-the-art techniques are currently applied at various stages of development and manufacturing of tablets at industrial scale. Each technique has specific advantages or challenges with respect to operational efficiency and cost, compared to traditional analytical methods. Currently, most of these techniques are used as secondary analytical tools to support the traditional methods in characterizing or monitoring tablet quality attributes. Therefore, further development in the instrumentation and software, and studies on the applications are necessary for their adoption in routine analysis and monitoring of tablet physical-mechanical properties
    corecore