13,204 research outputs found

    Correlated-Spaces Regression for Learning Continuous Emotion Dimensions

    Get PDF
    Adopting continuous dimensional annotations for affective analysis has been gaining rising attention by researchers over the past years. Due to the idiosyncratic nature of this problem, many subproblems have been identified, spanning from the fusion of multiple continuous annotations to exploiting output-correlations amongst emotion dimensions. In this paper, we firstly empirically answer several important questions which have found partial or no answer at all so far in related literature. In more detail, we study the correlation of each emotion dimension (i) with respect to other emotion dimensions, (ii) to basic emotions (e.g., happiness, anger). As a measure for comparison, we use video and audio features. Interestingly enough, we find that (i) each emotion dimension is more correlated with other emotion dimensions rather than with face and audio features, and similarly (ii) that each basic emotion is more correlated with emotion dimensions than with audio and video features. A similar conclusion holds for discrete emotions which are found to be highly correlated to emotion dimensions as compared to audio and/or video features. Motivated by these findings, we present a novel regression algorithm (Correlated-Spaces Regression, CSR), inspired by Canonical Correlation Analysis (CCA) which learns output-correlations and performs supervised dimensionality reduction and multimodal fusion by (i) projecting features extracted from all modalities and labels onto a common space where their inter-correlation is maximised and (ii) learning mappings from the projected feature space onto the projected, uncorrelated label space

    Correlated-spaces regression for learning continuous emotion dimensions

    Full text link

    Robust correlated and individual component analysis

    Get PDF
    © 1979-2012 IEEE.Recovering correlated and individual components of two, possibly temporally misaligned, sets of data is a fundamental task in disciplines such as image, vision, and behavior computing, with application to problems such as multi-modal fusion (via correlated components), predictive analysis, and clustering (via the individual ones). Here, we study the extraction of correlated and individual components under real-world conditions, namely i) the presence of gross non-Gaussian noise and ii) temporally misaligned data. In this light, we propose a method for the Robust Correlated and Individual Component Analysis (RCICA) of two sets of data in the presence of gross, sparse errors. We furthermore extend RCICA in order to handle temporal incongruities arising in the data. To this end, two suitable optimization problems are solved. The generality of the proposed methods is demonstrated by applying them onto 4 applications, namely i) heterogeneous face recognition, ii) multi-modal feature fusion for human behavior analysis (i.e., audio-visual prediction of interest and conflict), iii) face clustering, and iv) thetemporal alignment of facial expressions. Experimental results on 2 synthetic and 7 real world datasets indicate the robustness and effectiveness of the proposed methodson these application domains, outperforming other state-of-the-art methods in the field

    Automatic Measurement of Affect in Dimensional and Continuous Spaces: Why, What, and How?

    Get PDF
    This paper aims to give a brief overview of the current state-of-the-art in automatic measurement of affect signals in dimensional and continuous spaces (a continuous scale from -1 to +1) by seeking answers to the following questions: i) why has the field shifted towards dimensional and continuous interpretations of affective displays recorded in real-world settings? ii) what are the affect dimensions used, and the affect signals measured? and iii) how has the current automatic measurement technology been developed, and how can we advance the field

    Machine learning for automatic analysis of affective behaviour

    Get PDF
    The automated analysis of affect has been gaining rapidly increasing attention by researchers over the past two decades, as it constitutes a fundamental step towards achieving next-generation computing technologies and integrating them into everyday life (e.g. via affect-aware, user-adaptive interfaces, medical imaging, health assessment, ambient intelligence etc.). The work presented in this thesis focuses on several fundamental problems manifesting in the course towards the achievement of reliable, accurate and robust affect sensing systems. In more detail, the motivation behind this work lies in recent developments in the field, namely (i) the creation of large, audiovisual databases for affect analysis in the so-called ''Big-Data`` era, along with (ii) the need to deploy systems under demanding, real-world conditions. These developments led to the requirement for the analysis of emotion expressions continuously in time, instead of merely processing static images, thus unveiling the wide range of temporal dynamics related to human behaviour to researchers. The latter entails another deviation from the traditional line of research in the field: instead of focusing on predicting posed, discrete basic emotions (happiness, surprise etc.), it became necessary to focus on spontaneous, naturalistic expressions captured under settings more proximal to real-world conditions, utilising more expressive emotion descriptions than a set of discrete labels. To this end, the main motivation of this thesis is to deal with challenges arising from the adoption of continuous dimensional emotion descriptions under naturalistic scenarios, considered to capture a much wider spectrum of expressive variability than basic emotions, and most importantly model emotional states which are commonly expressed by humans in their everyday life. In the first part of this thesis, we attempt to demystify the quite unexplored problem of predicting continuous emotional dimensions. This work is amongst the first to explore the problem of predicting emotion dimensions via multi-modal fusion, utilising facial expressions, auditory cues and shoulder gestures. A major contribution of the work presented in this thesis lies in proposing the utilisation of various relationships exhibited by emotion dimensions in order to improve the prediction accuracy of machine learning methods - an idea which has been taken on by other researchers in the field since. In order to experimentally evaluate this, we extend methods such as the Long Short-Term Memory Neural Networks (LSTM), the Relevance Vector Machine (RVM) and Canonical Correlation Analysis (CCA) in order to exploit output relationships in learning. As it is shown, this increases the accuracy of machine learning models applied to this task. The annotation of continuous dimensional emotions is a tedious task, highly prone to the influence of various types of noise. Performed real-time by several annotators (usually experts), the annotation process can be heavily biased by factors such as subjective interpretations of the emotional states observed, the inherent ambiguity of labels related to human behaviour, the varying reaction lags exhibited by each annotator as well as other factors such as input device noise and annotation errors. In effect, the annotations manifest a strong spatio-temporal annotator-specific bias. Failing to properly deal with annotation bias and noise leads to an inaccurate ground truth, and therefore to ill-generalisable machine learning models. This deems the proper fusion of multiple annotations, and the inference of a clean, corrected version of the ``ground truth'' as one of the most significant challenges in the area. A highly important contribution of this thesis lies in the introduction of Dynamic Probabilistic Canonical Correlation Analysis (DPCCA), a method aimed at fusing noisy continuous annotations. By adopting a private-shared space model, we isolate the individual characteristics that are annotator-specific and not shared, while most importantly we model the common, underlying annotation which is shared by annotators (i.e., the derived ground truth). By further learning temporal dynamics and incorporating a time-warping process, we are able to derive a clean version of the ground truth given multiple annotations, eliminating temporal discrepancies and other nuisances. The integration of the temporal alignment process within the proposed private-shared space model deems DPCCA suitable for the problem of temporally aligning human behaviour; that is, given temporally unsynchronised sequences (e.g., videos of two persons smiling), the goal is to generate the temporally synchronised sequences (e.g., the smile apex should co-occur in the videos). Temporal alignment is an important problem for many applications where multiple datasets need to be aligned in time. Furthermore, it is particularly suitable for the analysis of facial expressions, where the activation of facial muscles (Action Units) typically follows a set of predefined temporal phases. A highly challenging scenario is when the observations are perturbed by gross, non-Gaussian noise (e.g., occlusions), as is often the case when analysing data acquired under real-world conditions. To account for non-Gaussian noise, a robust variant of Canonical Correlation Analysis (RCCA) for robust fusion and temporal alignment is proposed. The model captures the shared, low-rank subspace of the observations, isolating the gross noise in a sparse noise term. RCCA is amongst the first robust variants of CCA proposed in literature, and as we show in related experiments outperforms other, state-of-the-art methods for related tasks such as the fusion of multiple modalities under gross noise. Beyond private-shared space models, Component Analysis (CA) is an integral component of most computer vision systems, particularly in terms of reducing the usually high-dimensional input spaces in a meaningful manner pertaining to the task-at-hand (e.g., prediction, clustering). A final, significant contribution of this thesis lies in proposing the first unifying framework for probabilistic component analysis. The proposed framework covers most well-known CA methods, such as Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA), Locality Preserving Projections (LPP) and Slow Feature Analysis (SFA), providing further theoretical insights into the workings of CA. Moreover, the proposed framework is highly flexible, enabling novel CA methods to be generated by simply manipulating the connectivity of latent variables (i.e. the latent neighbourhood). As shown experimentally, methods derived via the proposed framework outperform other equivalents in several problems related to affect sensing and facial expression analysis, while providing advantages such as reduced complexity and explicit variance modelling.Open Acces

    EMPATH: A Neural Network that Categorizes Facial Expressions

    Get PDF
    There are two competing theories of facial expression recognition. Some researchers have suggested that it is an example of "categorical perception." In this view, expression categories are considered to be discrete entities with sharp boundaries, and discrimination of nearby pairs of expressive faces is enhanced near those boundaries. Other researchers, however, suggest that facial expression perception is more graded and that facial expressions are best thought of as points in a continuous, low-dimensional space, where, for instance, "surprise" expressions lie between "happiness" and "fear" expressions due to their perceptual similarity. In this article, we show that a simple yet biologically plausible neural network model, trained to classify facial expressions into six basic emotions, predicts data used to support both of these theories. Without any parameter tuning, the model matches a variety of psychological data on categorization, similarity, reaction times, discrimination, and recognition difficulty, both qualitatively and quantitatively. We thus explain many of the seemingly complex psychological phenomena related to facial expression perception as natural consequences of the tasks' implementations in the brain

    What Twitter Profile and Posted Images Reveal About Depression and Anxiety

    Full text link
    Previous work has found strong links between the choice of social media images and users' emotions, demographics and personality traits. In this study, we examine which attributes of profile and posted images are associated with depression and anxiety of Twitter users. We used a sample of 28,749 Facebook users to build a language prediction model of survey-reported depression and anxiety, and validated it on Twitter on a sample of 887 users who had taken anxiety and depression surveys. We then applied it to a different set of 4,132 Twitter users to impute language-based depression and anxiety labels, and extracted interpretable features of posted and profile pictures to uncover the associations with users' depression and anxiety, controlling for demographics. For depression, we find that profile pictures suppress positive emotions rather than display more negative emotions, likely because of social media self-presentation biases. They also tend to show the single face of the user (rather than show her in groups of friends), marking increased focus on the self, emblematic for depression. Posted images are dominated by grayscale and low aesthetic cohesion across a variety of image features. Profile images of anxious users are similarly marked by grayscale and low aesthetic cohesion, but less so than those of depressed users. Finally, we show that image features can be used to predict depression and anxiety, and that multitask learning that includes a joint modeling of demographics improves prediction performance. Overall, we find that the image attributes that mark depression and anxiety offer a rich lens into these conditions largely congruent with the psychological literature, and that images on Twitter allow inferences about the mental health status of users.Comment: ICWSM 201

    The ecology of suffering: developmental disorders of structured stress, emotion, and chronic inflammation

    Get PDF
    'Punctuated equilibrium' models of cognitive process, adapted from the Large Deviations Program of probability theory, are applied to the interaction between immune function and emotion in the context of culturally structured psychosocial stress. The analysis suggests: (1) Chronic inflammatory diseases should be comorbid and synergistic with characteristic emotional dysfunction, and may form a collection of joint disorders most effectively treated at the individual level using multifactorial 'mind/body' strategies. (2) Culturally constructed psychosocial stress can literally write an image of itself onto the punctuated etiology and progression of such composite disorders, beginning a trajectory to disease in utero or early childhood, and continuing throughout the life course, suggesting that, when moderated by 'social exposures', these are developmental disorders. (3) At the community level of organization, strategies for prevention and control of the spectrum of emotional/inflammatory developmental disorders must include redress of cross-sectional and logitudinal (i.e. historical) patterns of inequality and injustice which generate structured psychosocial stress. Evidence further suggests that within 'Westernized' or 'market economy' societies, such stress will inevitably entrain high as well as lower stutus subopulations into a unified ecology of suffering
    • …
    corecore