10,288 research outputs found

    On the Two-user Multi-carrier Joint Channel Selection and Power Control Game

    Full text link
    In this paper, we propose a hierarchical game approach to model the energy efficiency maximization problem where transmitters individually choose their channel assignment and power control. We conduct a thorough analysis of the existence, uniqueness and characterization of the Stackelberg equilibrium. Interestingly, we formally show that a spectrum orthogonalization naturally occurs when users decide sequentially about their transmitting carriers and powers, delivering a binary channel assignment. Both analytical and simulation results are provided for assessing and improving the performances in terms of energy efficiency and spectrum utilization between the simultaneous-move game (with synchronous decision makers), the social welfare (in a centralized manner) and the proposed Stackelberg (hierarchical) game. For the first time, we provide tight closed-form bounds on the spectral efficiency of such a model, including correlation across carriers and users. We show that the spectrum orthogonalization capability induced by the proposed hierarchical game model enables the wireless network to achieve the spectral efficiency improvement while still enjoying a high energy efficiency.Comment: 31 pages, 13 figures, accepted in IEEE Transactions on Communication

    Joint Channel Selection and Power Control in Infrastructureless Wireless Networks: A Multi-Player Multi-Armed Bandit Framework

    Full text link
    This paper deals with the problem of efficient resource allocation in dynamic infrastructureless wireless networks. Assuming a reactive interference-limited scenario, each transmitter is allowed to select one frequency channel (from a common pool) together with a power level at each transmission trial; hence, for all transmitters, not only the fading gain, but also the number of interfering transmissions and their transmit powers are varying over time. Due to the absence of a central controller and time-varying network characteristics, it is highly inefficient for transmitters to acquire global channel and network knowledge. Therefore a reasonable assumption is that transmitters have no knowledge of fading gains, interference, and network topology. Each transmitting node selfishly aims at maximizing its average reward (or minimizing its average cost), which is a function of the action of that specific transmitter as well as those of all other transmitters. This scenario is modeled as a multi-player multi-armed adversarial bandit game, in which multiple players receive an a priori unknown reward with an arbitrarily time-varying distribution by sequentially pulling an arm, selected from a known and finite set of arms. Since players do not know the arm with the highest average reward in advance, they attempt to minimize their so-called regret, determined by the set of players' actions, while attempting to achieve equilibrium in some sense. To this end, we design in this paper two joint power level and channel selection strategies. We prove that the gap between the average reward achieved by our approaches and that based on the best fixed strategy converges to zero asymptotically. Moreover, the empirical joint frequencies of the game converge to the set of correlated equilibria. We further characterize this set for two special cases of our designed game

    Channel Selection for Network-assisted D2D Communication via No-Regret Bandit Learning with Calibrated Forecasting

    Full text link
    We consider the distributed channel selection problem in the context of device-to-device (D2D) communication as an underlay to a cellular network. Underlaid D2D users communicate directly by utilizing the cellular spectrum but their decisions are not governed by any centralized controller. Selfish D2D users that compete for access to the resources construct a distributed system, where the transmission performance depends on channel availability and quality. This information, however, is difficult to acquire. Moreover, the adverse effects of D2D users on cellular transmissions should be minimized. In order to overcome these limitations, we propose a network-assisted distributed channel selection approach in which D2D users are only allowed to use vacant cellular channels. This scenario is modeled as a multi-player multi-armed bandit game with side information, for which a distributed algorithmic solution is proposed. The solution is a combination of no-regret learning and calibrated forecasting, and can be applied to a broad class of multi-player stochastic learning problems, in addition to the formulated channel selection problem. Analytically, it is established that this approach not only yields vanishing regret (in comparison to the global optimal solution), but also guarantees that the empirical joint frequencies of the game converge to the set of correlated equilibria.Comment: 31 pages (one column), 9 figure

    Non-atomic Games for Multi-User Systems

    Get PDF
    In this contribution, the performance of a multi-user system is analyzed in the context of frequency selective fading channels. Using game theoretic tools, a useful framework is provided in order to determine the optimal power allocation when users know only their own channel (while perfect channel state information is assumed at the base station). We consider the realistic case of frequency selective channels for uplink CDMA. This scenario illustrates the case of decentralized schemes, where limited information on the network is available at the terminal. Various receivers are considered, namely the Matched filter, the MMSE filter and the optimum filter. The goal of this paper is to derive simple expressions for the non-cooperative Nash equilibrium as the number of mobiles becomes large and the spreading length increases. To that end two asymptotic methodologies are combined. The first is asymptotic random matrix theory which allows us to obtain explicit expressions of the impact of all other mobiles on any given tagged mobile. The second is the theory of non-atomic games which computes good approximations of the Nash equilibrium as the number of mobiles grows.Comment: 17 pages, 4 figures, submitted to IEEE JSAC Special Issue on ``Game Theory in Communication Systems'

    "To sense" or "not to sense" in energy-efficient power control games

    Full text link
    A network of cognitive transmitters is considered. Each transmitter has to decide his power control policy in order to maximize energy-efficiency of his transmission. For this, a transmitter has two actions to take. He has to decide whether to sense the power levels of the others or not (which corresponds to a finite sensing game), and to choose his transmit power level for each block (which corresponds to a compact power control game). The sensing game is shown to be a weighted potential game and its set of correlated equilibria is studied. Interestingly, it is shown that the general hybrid game where each transmitter can jointly choose the hybrid pair of actions (to sense or not to sense, transmit power level) leads to an outcome which is worse than the one obtained by playing the sensing game first, and then playing the power control game. This is an interesting Braess-type paradox to be aware of for energy-efficient power control in cognitive networks.Comment: Proc. of the 2nd International Conference on Game Theory for Network (GAMENETS), 201

    Resource Allocation in a MAC with and without security via Game Theoretic Learning

    Full text link
    In this paper a KK-user fading multiple access channel with and without security constraints is studied. First we consider a F-MAC without the security constraints. Under the assumption of individual CSI of users, we propose the problem of power allocation as a stochastic game when the receiver sends an ACK or a NACK depending on whether it was able to decode the message or not. We have used Multiplicative weight no-regret algorithm to obtain a Coarse Correlated Equilibrium (CCE). Then we consider the case when the users can decode ACK/NACK of each other. In this scenario we provide an algorithm to maximize the weighted sum-utility of all the users and obtain a Pareto optimal point. PP is socially optimal but may be unfair to individual users. Next we consider the case where the users can cooperate with each other so as to disagree with the policy which will be unfair to individual user. We then obtain a Nash bargaining solution, which in addition to being Pareto optimal, is also fair to each user. Next we study a KK-user fading multiple access wiretap Channel with CSI of Eve available to the users. We use the previous algorithms to obtain a CCE, PP and a NBS. Next we consider the case where each user does not know the CSI of Eve but only its distribution. In that case we use secrecy outage as the criterion for the receiver to send an ACK or a NACK. Here also we use the previous algorithms to obtain a CCE, PP or a NBS. Finally we show that our algorithms can be extended to the case where a user can transmit at different rates. At the end we provide a few examples to compute different solutions and compare them under different CSI scenarios.Comment: 27 pages, 12 figures. Part of the paper was presented in 2016 IEEE Information theory and applicaitons (ITA) Workshop, San Diego, USA in Feb. 2016. Submitted to journa
    corecore