5,235 research outputs found

    Correctness of Linear Logic Proof Structures is NL-Complete

    Get PDF
    23 pagesInternational audienceWe provide new correctness criteria for all fragments (multiplicative, exponential, additive) of linear logic. We use these criteria for proving that deciding the correctness of a linear logic proof structure is NL-complete

    Rapid Recovery for Systems with Scarce Faults

    Full text link
    Our goal is to achieve a high degree of fault tolerance through the control of a safety critical systems. This reduces to solving a game between a malicious environment that injects failures and a controller who tries to establish a correct behavior. We suggest a new control objective for such systems that offers a better balance between complexity and precision: we seek systems that are k-resilient. In order to be k-resilient, a system needs to be able to rapidly recover from a small number, up to k, of local faults infinitely many times, provided that blocks of up to k faults are separated by short recovery periods in which no fault occurs. k-resilience is a simple but powerful abstraction from the precise distribution of local faults, but much more refined than the traditional objective to maximize the number of local faults. We argue why we believe this to be the right level of abstraction for safety critical systems when local faults are few and far between. We show that the computational complexity of constructing optimal control with respect to resilience is low and demonstrate the feasibility through an implementation and experimental results.Comment: In Proceedings GandALF 2012, arXiv:1210.202

    Nominal Logic Programming

    Full text link
    Nominal logic is an extension of first-order logic which provides a simple foundation for formalizing and reasoning about abstract syntax modulo consistent renaming of bound names (that is, alpha-equivalence). This article investigates logic programming based on nominal logic. We describe some typical nominal logic programs, and develop the model-theoretic, proof-theoretic, and operational semantics of such programs. Besides being of interest for ensuring the correct behavior of implementations, these results provide a rigorous foundation for techniques for analysis and reasoning about nominal logic programs, as we illustrate via examples.Comment: 46 pages; 19 page appendix; 13 figures. Revised journal submission as of July 23, 200

    Correctness of Multiplicative (and Exponential) Proof Structures is NL-Complete

    No full text
    15 pagesInternational audienceWe provide a new correctness criterion for unit-free MLL proof structures and MELL proof structures with units. We prove that deciding the correctness of a MLL and of a MELL proof structure is NL-complete. We also prove that deciding the correctness of an intuitionistic multiplicative essential net is NL-complete

    Constructing Fully Complete Models of Multiplicative Linear Logic

    Full text link
    The multiplicative fragment of Linear Logic is the formal system in this family with the best understood proof theory, and the categorical models which best capture this theory are the fully complete ones. We demonstrate how the Hyland-Tan double glueing construction produces such categories, either with or without units, when applied to any of a large family of degenerate models. This process explains as special cases a number of such models from the literature. In order to achieve this result, we develop a tensor calculus for compact closed categories with finite biproducts. We show how the combinatorial properties required for a fully complete model are obtained by this glueing construction adding to the structure already available from the original category.Comment: 72 pages. An extended abstract of this work appeared in the proceedings of LICS 201
    corecore