
Theoretical Computer Science 412 (2011) 1941–1957

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Correctness of linear logic proof structures is NL-complete✩

Paulin Jacobé de Naurois ∗, Virgile Mogbil
Laboratoire d’Informatique de l’Université Paris Nord (LIPN), UMR CNRS 7030, Institut Galilée - Université Paris 13, 99, avenue Jean-Baptiste Clément,
93430 Villetaneuse, France

a r t i c l e i n f o

Keywords:
Complexity classes
Correctness criteria
Linear logic
Nondeterministic logspace

a b s t r a c t

We provide new correctness criteria for all fragments (multiplicative, exponential,
additive) of linear logic. We use these criteria for proving that deciding the correctness
of a linear logic proof structure is NL-complete.

© 2011 Published by Elsevier B.V.

0. Introduction

The proof nets [5,3] of linear logic (LL) are a parallel syntax for logical proofs without all the bureaucracy of sequent
calculus. They are a non-sequential graph-theoretic representation of proofs, where the order in which some rules are used
in a sequent calculus derivation,when irrelevant, is neglected. The unit-freemultiplicative proof nets are inductively defined
from sequent calculus rules of unit-free multiplicative linear logic (MLL). The MLL proof structures are freely built on the
same syntax as proof nets, without any reference to a sequent calculus derivation. The same holds for MELL andMALL proof
nets and proof structures with respect to MELL and MALL sequent calculus.

In LL, we are mainly interested in the following decision problems: deciding the provability of a given formula, which
gives the expressiveness of the logic; deciding if two given proofs reduce to the same normal form, i.e., the cut-elimination
problem which corresponds to program equivalence using the Curry–Howard isomorphism; and deciding the correctness
of a given proof structure, i.e., whether it comes from a sequent calculus derivation. For this last decision problem, one uses
a correctness criterion to distinguish proof nets among proof structures. We recall the following main results [13,15] and we
complete (in bold) the correctness cases:

fragment decision problem
units provability cut-elimination correctness

MLL no NP-complete P-complete
NL-completeMELL yes open non-elementary

MALL no PSPACE-complete coNP-complete

Correctness is equivalent to provability for unit only MLL because proof nets are formulae syntactic trees. However, it is not
so obvious for the propositional case as one can observe following the long story of correctness criteria.

• The long-trip criterion [5] is based on travels, and was the first one.
• The acyclic-connected criterion [3] is a condition that is based on switchings, i.e., the choice of one premise for each O

connective. The condition is that all the associated graphs are trees. A naive implementation of the acyclic-connected
criterion uses exponential time.

• The contractibility criterion [2] is done in quadratic time by repeating two graph rewriting rules until one obtains a simple
node.

✩ Work supported by project NOCoST (ANR, JC05_43380).
∗ Corresponding author.

E-mail addresses: denaurois@lipn.univ-paris13.fr (P. Jacobé de Naurois), Virgile.Mogbil@lipn.univ-paris13.fr (V. Mogbil).

0304-3975/$ – see front matter© 2011 Published by Elsevier B.V.
doi:10.1016/j.tcs.2010.12.020

http://dx.doi.org/10.1016/j.tcs.2010.12.020
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:denaurois@lipn.univ-paris13.fr
mailto:Virgile.Mogbil@lipn.univ-paris13.fr
http://dx.doi.org/10.1016/j.tcs.2010.12.020

1942 P. Jacobé de Naurois, V. Mogbil / Theoretical Computer Science 412 (2011) 1941–1957

• The graph parsing criterion [14] is a strategy for contractibility which is implemented in linear time as a sort of
unification [7].

• The dominator tree criterion [17,18] is a linear-time correctness criterion for essential nets, to which proof structure
correctness reduces in linear time.

• The ribbon criterion [16] is a topological condition requiring homeomorphism to the disk.

For other fragments of linear logic, some of these criteria apply or are extended as for MELL1 [2,8] or MALL [6,4,9].
A feature of these criteria is that they successively lower the complexity of sequential, deterministic algorithms deciding

correctness for MLL. Switching from proof structures to paired graphs, that is, undirected graphs with a distinguished set
of edges, we give a new correctness criterion for MLL and more generally for MELL. This new correctness criterion gives,
for the first time, a lower bound for the correctness decision problem for both MLL (MLL-corr) and MELL (MELL-corr).
This lower bound yields an exact characterization of the complexity of this problem, and induces naturally efficient parallel
and randomized algorithms for it. The classical inclusion NL ⊆ P induces a deterministic polynomial-time version of our
algorithm; note, however, that there is little hope for this to be linear time.

Our new criterion also induces an NL algorithm for the correctness problem for MALL proof structures (MALL-corr) as
defined in [9], thus establishing as well the NL-hardness of this problem.

The paper is organized as follows. We recall preliminary definitions and results in linear logic and complexity theory
in Section 1. Section 2 is devoted to the exposition of a new correctness criterion for unit-free MLL and MELL with units
(Theorem 2.6). Proposition 2.7 establishes the NL-hardness of MLL-corr and Proposition 2.9 the NL-membership of MELL-
corr. Section 3 is devoted to the proof of the NL-membership of MALL-corr. The NL-completeness of MLL-corr, MELL-corr
and MALL-corr is established in Theorem 3.20.

1. Background

1.1. MLL and proof structures

Italic capitals A, B stand for MLL formulae, which are given by the following grammar, where � and O are duals for the
negation ⊥, accordingly to the De Morgan laws:

MLL : F::=A | A⊥
| F � F | FOF

Greek capitals Γ , ∆ stand for sequents, which are multisets of formulae, so that exchange is implicit. The MLL sequent
calculus is given by the following rules:

⊢ A, A⊥
(ax) ⊢ Γ , C ⊢ ∆, C⊥

⊢ Γ , ∆
(cut)

⊢ Γ , A ⊢ ∆, B
⊢ Γ , ∆, A � B

�
⊢ Γ , A, B
⊢ Γ , AOB

O

Definition 1.1. An MLL skeleton is a directed acyclic graph (DAG) whose edges are labelled with MLL formulae, and whose
nodes are labelled, and defined with an arity and coarity as follows:

Node label Atom Cut � O
Arity Edges 0 ∅ 2 A, A⊥ 2 A, B 2 A, B
Coarity Edges 1 A 0 ∅ 1 A � B 1 AOB

We allow edges with a source but no target (i.e., pending or dangling edges); they are called the conclusions of the proof
structure. The set of conclusions of an MLL skeleton is clearly an MLL sequent. We also denote as premises of a node the
edges incident to it, and conclusion of a node its outgoing edge.
For a given node x of arity 2, its left (respectively right) parent is denoted xl (respectively xr).
An axiom link, or simply a link, on an MLL skeleton S is a bidirected edge between complementary atoms in S , i.e., atoms
labelled with dual literals P and P⊥.
A linking on S is a partitioning of the atom nodes of S into links, i.e., a set of disjoint links whose union contains every atom
of S.

An MLL proof structure is (S, λ), where S is an MLL skeleton and λ a linking on S.
An MLL proof net is an MLL proof structure inductively defined as follows.

• (ax): (S, λ), where S = ({A, A⊥
}, ∅), λ = {(A, A⊥)} is an MLL proof net with conclusions A, A⊥.

• O: if (S, λ) is an MLL proof net with conclusions Γ , A, B, then (S ′, λ), where S ′ is S extended with a O-link of premises
A and B is an MLL proof net with conclusions Γ , AOB.

• �: if (S1, λ1) with conclusions Γ , A and (S2, λ2) with conclusions ∆, B are disjoint MLL proof nets, (S, λ1 ⊎ λ2), where
S is S1 ⊎ S2 extended with a �-link of premises A and B is an MLL proof net with conclusions Γ , A � B, ∆.

1 As usualM, A and E denote respectively multiplicative, additive and exponential fragments of LL.

P. Jacobé de Naurois, V. Mogbil / Theoretical Computer Science 412 (2011) 1941–1957 1943

t t ✓✒ ✏✑t. . . t t
❆
❆t✁
✁

t ✓✒ ✏✑t. . . t t
❆
❆t✁
✁

t✓✒ ✏✑t. . . t
Fig. 1. Paired graph constructors associated to MLL proof nets: ax link, O-link and � (cut) link.

t
t

−→R1 t
t

−→R2 t
Fig. 2. Contraction rules →c .

• (cut): if (S1, λ1) with conclusions Γ , A and (S2, λ2) with conclusions ∆, A⊥ are disjoint MLL proof nets, (S, λ1 ⊎ λ2),
where S is S1 ⊎ S2 extended with a cut-link of premises A and A⊥ is an MLL proof net with conclusions Γ , ∆.

The inductive definition of MLL proof nets corresponds to a graph-theoretic abstraction of the derivation rules of MLL; any
proof net is sequentializable, i.e., corresponds to an MLL derivation: given a proof net P of conclusion Γ , there exists a
sequent calculus proof of ⊢ Γ which infers P .

Definition 1.2. A paired graph is an undirected graph G = (V , E)with a set of pairs C(G) ⊆ E×E which are pairwise disjoint
couples of edges with the same target, called a pair node, and two (possibly distinct) sources called the premise nodes.

A switching S of G is the choice of an edge for every pair of C(G). With each switching S is associated a subgraph S(G) of
G: for every pair of C(G), erase the edges which are not selected by S. When S selects the (abusively speaking) left edge of
each pair, S(G) is denoted as G[∀ →∵\]. Also, G[∀ →∵] stands for G \ {e, e′

| (e, e′) ∈ C(G)}.

Remark 1.3. Without loss of generality, we allow tuples of edges, i.e., C(G) ⊆


n∈N E. A tuple of edges incident to a node x
can be seen as a binary tree rooted at xwith all in-going edges being coupled.

Let S = (V , E) be an MLL skeleton. To S , we associate the paired graph GS = (V , E), where C(GS) contains the premises
of each O-link of S .
To an MLL proof structure (S, λ), we associate the paired graph G(S,λ) = GS ⊎ λ, where C(G(S,λ)) = C(GS) (Fig. 1).
For a pair of edges (v, x), (w, x), we adopt the representation of Fig. 1, where the two edges of the pair are joined by an arc.
We define the following graph rewriting rules �c of Fig. 2 on paired graphs where all the nodes are distinct and rule �R2
applies only for a non-pair edge. We denote by G →

∗
c • the fact that G contracts to a single vertex with no edge.

Definition 1.4. AnMLL proof structure (S, λ) is DR-correct if, for all switchings S of G(S,λ), the graph S(G(S,λ)) is acyclic and
connected.

An MLL proof structure (S, λ) is contractile if G(S,λ) �∗
c •.

Theorem 1.5 ([3,2]). An MLL proof structure (S, λ) is an MLL proof net iff (S, λ) is DR-correct iff (S, λ) is contractile. �

We define the following decision problem MLL-corr:
Given: An MLL proof structure (S, λ).
Problem: Is (S, λ) an MLL proof net?

1.2. MELL and proof structures

The definition of MELL formulae follows that of MLL formulae in Section 1.1, with ! and ? duals for the negation ⊥, as well
as the neutral elements 1 and ⊥:

MELL : F::=A | A⊥
| F � F | FOF | !F | ?F | 1 | ⊥

The MELL sequent calculus contains the rules of the MLL sequent calculus, as well as the following rules:

⊢ Γ

⊢ Γ , ⊥
⊥

⊢ 1 1 ⊢ Γ

⊢ Γ , ?A ?W
⊢ Γ , ?A, ?A

⊢ Γ , ?A ?C
⊢ Γ , A
⊢ Γ , ?A ?D

⊢?Γ , A
⊢?Γ , !A !P

Definition 1.6. MELL skeletons are defined similarly to MLL skeletons (Definition 1.1), with the following additional nodes,
where the ?W node subsumes both ?W and ⊥ MELL sequent calculus rules:

Node label 1 ?W ?C ?D !P
Arity Edges 0 ∅ 0 ∅ 2 ?A, ?A 1 A 1 A
Coarity Edges 1 1 1 ⊥,?A 1 ?A 1 ?A 1 !A

1944 P. Jacobé de Naurois, V. Mogbil / Theoretical Computer Science 412 (2011) 1941–1957

Definition 1.7. An exponential box is anMELL skeletonwhose conclusions are all ? formulae but one, its principal door, which
is conclusion of a !P node. Similarly, aweakening box is an MELL skeleton with a distinguished conclusion, its principal door,
which is the conclusion of a ?W node. A box is either an exponential or a weakening box.

Definition 1.8. AnMELL boxed structure (S, B) is given by a MELL skeleton S and a set of exponential and weakening boxes
B = {B1, . . . , Bk}. Moreover, boxes may nest but may not partially overlap. For a given node in S , its associated box (if there
is any) is the smallest box in B that contains it. A unique exponential (respectively weakening) box is associated to each
!P node (respectively ?W node). The set B of boxes is identified with a box mapping B which, for a given node in S , returns
its associated box if there is any, and S otherwise.

Definition 1.9. An MELL proof structure is (S, B, λ), where (S, B) is a boxed structure and λ is a linking on S.

As for MLL, the set of conclusions of an MELL proof structure is by construction an MELL sequent.

Definition 1.10. An MELL proof net is an MELL proof structure defined inductively as follows.

• (ax): (({A, A⊥
}, ∅), ∅, {(A, A⊥)}) is an MELL proof net with conclusions A, A⊥.

• O: if (S, B, λ) is an MELL proof net with conclusions Γ , A, C , then (S ′, B, λ), where S ′ is S extended with a O-link of
premises A and C , is an MELL proof net with conclusions Γ , AOC .

• �: if (S1, B1, λ1) with conclusions Γ , A and (S2, B2, λ2) with conclusions ∆, C are disjoint MELL proof nets, (S, B1 ⊎

B2, λ1 ⊎ λ2), where S is S1 ⊎ S2 extended with a �-link of premises A and C , is a MELL proof net with conclusions
Γ , A � C, ∆.

• (cut): if (S1, B1, λ1) with conclusions Γ , A and (S2, B2, λ2) with conclusions ∆, A⊥ are disjoint MELL proof nets, (S, B1 ⊎

B2, λ1 ⊎ λ2), where S is S1 ⊎ S2 extended with a cut-link of premises A and A⊥, is an MELL proof net with conclusions
Γ , ∆.

• 1: (({1}, ∅), ∅, ∅) is a MELL proof net with conclusion 1.
• ?W: if (S, B, λ) is an MELL proof net with conclusions Γ , then, for any MELL formula A, (S ′, B ⊎ S ′, λ), where S ′ is S

extended with a ?W node with conclusion ?A (respectively ⊥), is a MELL proof net with conclusions Γ , ?A (respectively
Γ , ⊥).

• ?C: if (S, B, λ) is an MELL proof net with conclusions Γ , ?A, ?A, then (S ′, B, λ), where S ′ is S extended with a ?C node of
premises ?A and ?A, is an MELL proof net with conclusions Γ , ?A.

• ?D: if (S, B, λ) is an MELL proof net with conclusions Γ , A, then (S ′, B, λ), where S ′ is S extended with a ?D node of
premise A, is a MELL proof net with conclusions Γ , ?A.

• !P: if (S, B, λ) is an MELL proof net with conclusions ?Γ , A, then (S ′, B ⊎ S ′, λ), where S ′ is S extended with a !P node
of premise A, is an MELL proof net with conclusions ?Γ , !A.

As for MLL, MELL proof nets are induced by MELL sequent calculus proofs.

Definition 1.11. Let (S, B, λ) be anMELL proof structure, with boxes b1, . . . , bn. Let b0 = S. We define as follows the family
G(S,B,λ) = {Gi

(S,B,λ)}i=0...n of paired graphs.

• Gi
(S,B,λ) contains a node l for every node l of S \ {?W nodes} with B(l) = bi.

• Gi
(S,B,λ) contains an edge (l, l′) for l, l′ ∈ S \ {?W nodes} such that B(l) = B(l′) = bi if and only if
- there is an edge (l, l′) in S , or
- there is an edge (l′, l) in S , or
- (l, l′) ∈ λ.

• C(Gi
(S,B,λ)) contains the premises of each O-link and ?C node l of S with B(l) = bi.

• Assume that bj is an outermost box included in bi. A node bj ∈ Gi
(S,B,λ) is associated to bj, and an edge (bj, l) ∈ Gi

(S,B,λ) for
any node l conclusion of a node in bj and such that B(l) = bi.

Essentially, Gi
(S,B,λ) is the paired graph corresponding to the box bi, where all inner boxes are considered contracted to a

single node. Moreover, for the sake of connectivity, the ?W node (if there is any) corresponding to bi is removed.
An MELL proof structure (S, B, λ) with boxes b1, . . . , bn is DR-correct if, for all i ∈ {0, . . . , n}, and for all switchings S of
Gi

(S,B,λ), the graph S(Gi
(S,B,λ)) is acyclic and connected.

An MELL proof structure (S, B, λ) with boxes b1, . . . , bn is contractile if ∀i ∈ {0, . . . , n}, Gi
(S,B,λ) �∗

c •.

Theorem 1.12 ([8]). An MELL proof structure (S, B, λ) is an MELL proof net iff (S, B, λ) is DR-correct iff (S, B, λ) is
contractile. �

We define the following decision problem MELL-corr.
Given: An MELL proof structure (S, B, λ).
Problem: Is (S, B, λ) an MELL proof net?

P. Jacobé de Naurois, V. Mogbil / Theoretical Computer Science 412 (2011) 1941–1957 1945

1.3. MALL

We recall (and adapt to our formalism) the notion of MALL proof structures and proof nets defined in [9]. The definition
of MALL formulae follows that of MLL formulae in Section 1.1, with the additive connectives � and N, duals under the De
Morgan laws:

MALL : F::=A | A⊥
| F � F | FOF | F � F | FNF

The MALL sequent calculus contains the rules of the MLL sequent calculus, as well as the following rules:

⊢ Γ , A
⊢ Γ , A � B

�1
⊢ Γ , B

⊢ Γ , A � B
�2

⊢ Γ , A ⊢ Γ , B
⊢ Γ , ANB

N

Definition 1.13. MALL skeletons are defined similarly toMLL skeletons (Definition 1.1), with the following additional nodes:

Node label � N
Arity Edges 2 A, B 2 A, B
Coarity Edges 1 A�B 1 ANB

Definition 1.14. Let S be an MALL skeleton. An additive resolution of S is any result of deleting one argument subtree of
each additive (� or N) node in S. A N-resolution of S is any result of deleting one argument subtree of each N node in S.

A linking on an MALL skeleton S is a set of disjoint links on S such that its set of vertices is the set of leaves of an additive
resolution of S. Note that, in the casewhere S contains no additive node, this definition subsumesDefinition 1.1. The additive
resolution of S induced by a linking λ is denoted S � λ.

An additive resolution of S naturally induces an MLL skeleton, and, for any linking λ, (S � λ, λ) induces an MLL proof
structure. Denote by G(S�λ,λ) the paired graph associated to it.

An MALL proof structure is (S, Θ), where S is an MALL skeleton and Θ is a set of linkings on S. The set of conclusions of
an MALL proof structure is a MALL sequent.

Definition 1.15. An MALL proof net is an MALL proof structure inductively defined as follows.

• (ax): (({A, A⊥
}, ∅), {{(A, A⊥)}}) is an MALL proof net with conclusions A, A⊥.

• O: if (S, Θ) is anMALL proof net with conclusionsΓ , A, B, then (S ′, Θ), where S ′ is S extendedwith aO-link of premises
A and B, is an MALL proof net with conclusions Γ , AOB.

• �: if (S1, Θ1) with conclusions Γ , A and (S2, Θ2) with conclusions ∆, B are disjoint MALL proof nets, (S, Θ), where S is
S1 ⊎ S2 extended with a �-link of premises A and B and Θ is {λ1 ⊎ λ2, λ1 ∈ Θ1, λ2 ∈ Θ2}), is an MALL proof net with
conclusions Γ , A � B, ∆.

• (cut): if (S1, Θ1) with conclusions Γ , A and (S2, Θ2) with conclusions ∆, A⊥ are disjoint MALL proof nets, (S, Θ), where
S is S1 ⊎ S2 extended with a cut-link of premises A and A⊥ and Θ is {λ1 ⊎ λ2, λ1 ∈ Θ1, λ2 ∈ Θ2}), is an MALL proof net
with conclusions Γ , ∆.

• N: if (S ⊎ SA, ΘA), where S (respectively SA) has conclusionsΓ (respectively A) and (S ⊎ SB, ΘB), where SB has conclusion
B are MALL proof nets, then (S ⊎ S ′, ΘA ⊎ ΘB), where S ′ is SA ⊎ SB extended with a N node of premises A and B, is a
MALL proof net with conclusions Γ , ANB.

• �: for anyMALL formula B, if (S, Θ) is aMALL proof net with conclusionsΓ , A, then (S ′, Θ), where S ′ is S extendedwith
the syntactic tree of B and a � node of premises A and B (respectively B and A), is an MALL proof net with conclusions
Γ , A � B (respectively Γ , B � A).

Again, MALL proof nets are induced by MALL sequent calculus proofs.

Definition 1.16. Let (S, Θ) be an MALL proof structure.
LetW be a N-resolution of S and let λ ∈ Θ be a linking on S. We write λ ⊑ W if and only if every vertex of every link in

λ is a leaf ofW .
Let Λ ⊆ Θ be a set of linkings on S.
Λ is said to toggle aN node xN (respectively a� node x�) of S if there exist λ1, λ2 ∈ Λ such that xlN ∈ S � λ1 and xrN ∈ S � λ2

(respectively xl� ∈ S � λ1 and xr� ∈ S � λ2).
Let S � Λ =


λ∈Λ S � λ, and let GS�Λ =


λ∈Λ G(S�λ,λ).

Let xN be a N node in S and let a be an atom of S. Let {λ1, λ2} ⊆ Λ. A jump edge (xN, a) is admissible for {λ1, λ2} if and
only if

1. xN is the unique N node toggled by {λ1, λ2}, and
2. there exists a link l = (a, b) ∈ λ1 \ λ2.

Let HS�Λ be GS�Λ extended with all admissible jump edges for all {λ1, λ2} ⊆ Λ, and where C(HS�Λ) contains the premise –
and jump – edges incident to all O/N nodes of S � Λ (the pair edges are actually tuples as in Remark 1.3). Let G be a paired
graph. A switching cycle C in G is a cycle in S(G) for some switching S of G.

1946 P. Jacobé de Naurois, V. Mogbil / Theoretical Computer Science 412 (2011) 1941–1957

Theorem 1.17 (Correctness Criterion). [9]
AnMALL proof structure (S, Θ) is anMALL proof net iff the following hold.

1. (RES): For every N-resolution W of S , there exists a unique λ ∈ Θ such that λ ⊑ W;
2. (MLL): For every λ ∈ Θ , (S � λ, λ) is an MLL proof net; and
3. (TOG): For every Λ ⊆ Θ of two or more linkings, Λ toggles a N node xN such that xN does not belong to any switching cycle

of HS�Λ. �

We define the following decision problem MALL-corr.
Given: An MALL proof structure (S, Θ).
Problem: Is (S, Θ) an MALL proof net?

1.4. Complexity classes and related problems

Let us mention several major complexity classes below P , some of which having natural complete problems that we will
use in this paper. Let us briefly recall some basic definitions and results.

Definition 1.18. Complexity classes.

• AC0 (respectively AC1) is the class of problems solvable by a uniform family of circuits of constant (respectively
logarithmic) depth and polynomial size, with NOT gates and AND, OR gates of unbounded fan-in.

• L is the class of problems solvable by a deterministic Turing machine which only uses a logarithmic working space.
• NL (respectively coNL) is the class of problems solvable by a non-deterministic Turing machine which only uses a

logarithmic working space, such that the following hold.

1. If the answer is ‘‘yes’’, at least one (respectively all) computation path accepts.
2. If the answer is ‘‘no’’, all (respectively at least one) computation paths reject.

Theorem 1.19 ([10,20]). NL = coNL. �

The following inclusion results are also well known.

AC0
⊆ L ⊆ NL ⊆ AC1

⊆ P,

where it remains unknown whether any of these inclusions is strict.
It is important to note that our NL-completeness results for MLL-corr, MELL-corr and MALL-corr are under constant-

depth (actually AC0) reductions. From the inclusion above, it should be clear to the reader that the reductions lie indeed in
a class small enough to be relevant. For a good exposition of constant-depth reducibility, see [1].

In what follows, we will often use the notion of a path in a directed – or undirected – graph. A path is a sequence of
vertices such that there is an edge between any two consecutive vertices in the path. A path will be called elementarywhen
any node occurs at most once in the path.

Let us now list some graph-theoretic problems that will be used in this paper.
Is Tree (IT): Given an undirected graph G = (V , E), is it a tree?

IT is L-complete under constant-depth reductions [11].
Source–Target Connectivity (STCONN): Given a directed graph G = (V , E) and two vertices s and t , is there a path

from s to t in G ?
STCONN is NL-complete under constant-depth reductions [12].

Undirected Source–Target Connectivity (USTCONN): Given an undirected graph G = (V , E) and two vertices s and
t , do s and t belong to the same connected component of G ?
USTCONN is L-complete under constant-depth reductions [19].

Universal Source DAG (SDAG): Given a directed graph G = (V , E), is it acyclic and does there exist a source node s
such that there is a path from s to each vertex?

Proposition 1.20. SDAG ∈ NL.

Proof. Given G = (V , E) a directed graph, its acyclicity can be expressed as follows:

∀(x, y) ∈ V 2
: ¬STCONN(G, x, y) ∨ ¬STCONN(G, y, x).

Since NL = coNL (Theorem 1.19) and STCONN ∈ NL, acyclicity is clearly in NL. Checking whether each vertex can be reached
from a vertex s can also be done with STCONN subroutines; therefore SDAG is in NL. �

P. Jacobé de Naurois, V. Mogbil / Theoretical Computer Science 412 (2011) 1941–1957 1947

Proposition 1.21. SDAG is coNL-hard under constant-depth reductions.

Proof. Let L be any language in coNL. L is then decided by a non-deterministic Turing machineM in space less than k log(n)
on inputs of size n, for some k ≥ 0.

As it is usual in complexity, we denote by a configuration of a single-tape Turing machine the tuple (S, T , pos), where S
is the current state of the machine, T the content of its tape and pos the position of the scanning head on the tape. The size
of a configuration is the size of the non-empty part of its tape.

Let Cn be the set of configurations ofM of size less or equal to k log(n), and define T = |Cn|. Clearly, T = O(n2k) is an upper
bound for the computation time ofM on inputs of size n. Without loss of generality, we assume that every configuration of
M has at least one outgoing transition, possibly towards itself, and that the result of the computation is given by the state
reached byM after exactly T computation steps. A configuration is thus either accepting or rejecting.

Let us consider the following directed graph Gn = (Vn, En), where the following hold.

- Vn =


c∈Cn,t∈[0,T]
{(c, t)} ∪ {cA} ∪ {cR} ∪ {s}.

- For (c, t), (c ′, t + 1) ∈ Vn, ((c ′, t + 1) � (c, t)) ∈ En if and only if c � c ′ is a transition ofM .
- For c ∈ Cn, (cA � (c, T)) ∈ En iff c is an accepting configuration ofM .
- For c ∈ Cn, (cR � (c, T)) ∈ En iff c is a rejecting configuration ofM .
- (s � cA) ∈ En, (s � cR) ∈ En.

A path (c1, t1) � · · · � (ck, tk) in Gn follows by construction a sequence t1, . . . , tk that is strictly decreasing. Since there is
no edge (c, t) � cA, (c, t) � cR nor (c, t) � s, it is then clear that Gn is acyclic.

Moreover, since every configuration ofM has at least one outgoing transition, every vertex (c, t), t < T in Gn has at least
one parent node (c ′, t + 1). By induction on t , it follows that every vertex in Gn is reachable from s. Therefore, Gn satisfies
SDAG.

Let x be an input of size n toM . An initial configuration cx ∈ Cn ofM is naturally associated to this input x. Consider now
the directed graph Hx

n = Gn ∪ {(cx, 0) � cR}.
Then, Hx

n satisfies SDAG if and only if x ∈ L. Indeed, by Definition 1.18, x ∈ L if and only if there exists no computation
path cx � · · · � cr of length T in M , where cr is a rejecting configuration. By construction of Gn, such a path corresponds to
a path (cr , T) � · · · � (cx, 0) in Gn. Then x ∈ L if and only if there exists no path cR � · · · � (cx, 0) in Gn, if and only if Hx

n is
acyclic. Since Gn satisfies SDAG, it follows that Hx

n satisfies SDAG if and only if x ∈ L.
Moreover, it is well known that the configuration graph of a Turing machine can be computed with constant-depth

circuits. Computing Hx
n from the configuration graph of M requires only purely local rewriting rules, which can all be

performed in parallel. Therefore, Hx
n can also be computed with constant-depth circuits. �

Propositions 1.20 and 1.21, and Theorem 1.19 yield the following result.

Theorem 1.22. SDAG is NL-complete under constant-depth reductions. �

2. MLL andMELL

2.1. New correctness criteria forMLL and MELL

For a given paired graph, the following notion of a dependency graph provides a partial order among its pair nodes
corresponding to some valid contraction sequences accordingly to rule R1 of Fig. 2. Lemmas 2.3 and 2.4 establish that a
paired graph G is DR-correct if and only if the graph G[∀ →∵\] of Definition 1.2 is a tree and its dependency graph satisfies
SDAG. This yields a new correctness criterion for MLL-corr and MELL-corr given by Theorem 2.6.

Definition 2.1. Let G be a paired graph. The dependency graph D(G) of G is the directed graph (VG, EG) defined as follows.

• VG = {v | v is a pair node in G} ∪ {s}.
• Let x be a pair node in G, with premise nodes xl and xr . The edge (s � x) is in EG if and only if the following hold.

1. There exists an elementary path px = xl, . . . , xr in G[∀ →∵\].
2. x ∉ px, and for all pair nodes y in G, y ∉ px.

• Let x be a pair node in G, with premise nodes xl and xr , and let y ≠ x be another pair node in G. The edge (y � x) is in EG
if and only if the following hold.

1. There exists an elementary path px = xl, . . . , xr in G[∀ →∵\].
2. x ∉ px, and for every elementary path px = xl, . . . , xr in G[∀ →∵\] with x ∉ px, y ∈ px.

For examples of MLL proof structures, corresponding paired graphs and their dependency graphs, see Fig. 3.

Lemma 2.2. Let G and H be paired graphs, with G →c H. Then, G[∀ →∵\] →
∗
c H[∀ →∵\], and G[∀ →∵\] is a tree if and only if

H[∀ →∵\] is a tree.

1948 P. Jacobé de Naurois, V. Mogbil / Theoretical Computer Science 412 (2011) 1941–1957

Fig. 3. MLL proof structures, corresponding paired graph and dependency graphs, for the sequents A⊥, A � B, B⊥ (correct), A⊥, AOB, B⊥ (incorrect),
A � B, A⊥OB⊥ (correct) and ((A � B)OB⊥) � (C⊥O(C � D)),D⊥OA⊥ (correct).

Proof. If G →R1 H , denote by v the redex pair node in G, with premise w. The reduced pattern in H is the non-pair edge
(v, w); therefore G[∀ →∵\] = H[∀ →∵\]. If G →R2 H , it is clear that G[∀ →∵\] →R2 H[∀ →∵\] with the same redex. It is
also clear that rule →R2 preserves connectivity and acyclicity. �

Lemma 2.3. If G �∗
c • then D(G) satisfies SDAG.

Proof. Since •[∀ →∵\] is a tree, by Lemma 2.2 so is G[∀ →∵\]. Therefore, for any pair node x with premise nodes xl and xr
in G, there exists a unique elementary path px = xl − · · · − xr in G[∀ →∵\]. It follows by construction of D(G) that x has at
least one parent node in D(G). Moreover, a path x � · · · � y in D(G) induces by construction an elementary path xl −· · ·− y
in G[∀ →∵\]. Therefore, a cycle x � · · · � y, y � · · · � x in D(G) induces a cycle xl − · · · − y, yl − · · · − x in G[∀ →∵\]. Since
G[∀ →∵\] is a tree, D(G) is acyclic. Since every vertex of D(G) but s has at least one parent node and D(G) is acyclic, D(G)
satisfies SDAG. �

Lemma 2.4. Let G be a paired graph such that G[∀ →∵\] is a tree. If the dependency graph D(G) of G satisfies SDAG then G �∗
c •.

Proof. Let d(v), the depth of a pair node v ∈ G, be the length of the longest path from the source s of D(G) to the vertex
v ∈ D(G). Assume that D(G) satisfies SDAG, and let Xd

= {x pair node in G|d(x) = d} and Y d
= ∪d′⩽dXd′

.
By induction on the depth we prove that there exists a sequence of contractions Cd such that G →

Cd Gd satisfies the
following.

Each pair node y ∈ G s.t. d(y) ⩽ d is contracted in Gd. (1)

The proof by induction is as follows.

• For d = 1, let x ∈ X1, with premise nodes xl and xr . By definition of X1, there exists an elementary path px = xl −· · ·− xr
in G[∀ →∵\] such that x ∉ px, and for any pair node y in G[∀ →∵\], y ∉ px. The same holds for the path px = xl − · · · − xr
in G, with respect to any pair node y ∈ G.

Let E1
x = {e edge of px | x ∈ X1

}. The set of contractions R1
x = {e →c • | e ∈ E1

x } contracts the edges of px, and let
R1

= ∪x∈X1 R1
x . Clearly, xl = xr ≠ x in the contracted paired graph obtained from G by R1

x . Since x ∉ py for any y ∈ X1,
the same holds for the contracted paired graph obtained from G by R1.

Let C1 be the sequence R1, followed by the set of contraction rules of the pair nodes x ∈ X1. Define G1 such that
G →

C1 G1. It is clear that G1 satisfies (1).
• Assume by induction that there exists a sequence of contractions Cd such that G →

Cd Gd satisfies (1).
Let x ∈ Xd+1, with premise nodes xl and xr .
Since G →

Cd Gd and G[∀ →∵\] is a tree, Lemma 2.2 applies:

G[∀ →∵\] →
C′
d Gd

[∀ →∵\], and Gd
[∀ →∵\] is a tree. (2)

By definition of Xd+1, there exists an elementary path px = xl − · · · − xr in G[∀ →∵\] such that x ∉ px and, for every pair
node y ∈ G of depth d(y) > d, y ∉ px.

Define pdx such that px →
C′
d pdx . By (2), pdx is an elementary path in Gd

[∀ →∵\] such that x ∉ pdx and, for every pair node
y ∈ Gd

[∀ →∵\] of depth d(y) > d, y ∉ pdx . The same holds for pdx in Gd, with respect to any pair node y ∈ Gd, since, by
induction, for any pair node y ∈ Gd, d(y) > d.

Let Ed+1
x = {e edge of px | x ∈ Xd+1

}. The set of contractions Rd+1
x = {e →c • | e ∈ Ed+1

x } contracts the edges of pdx ,
and let Rd+1

= ∪x∈Xd+1 Rd+1
x . Clearly, xl = xr ≠ x in the contracted paired graph obtained from G by Rd+1

x . Since x ∉ py
for any y ∈ Xd+1, the same holds for the contracted paired graph obtained from G by Rd+1.

P. Jacobé de Naurois, V. Mogbil / Theoretical Computer Science 412 (2011) 1941–1957 1949

❅❅ ��

❅
❅

❅❅

�
�

��

� v

O vin � vout

❍❍
❍❍❥
❆
❆❯✁

✁✕
✟✟✟✟✯ ✲
v

v1
in . . .vi

in v1
out . . .v

j
out vi

inv1
in . . . v1

out . . . v
j
out

✲
❅

❅
�
�

❅
❅❅

❅
❅

�
�

�
��vs

vins voutsvi
inv1

in . . . v1
out . . . v

j
out

Fig. 4. Construction of (SG, λG) and G(SG,λG) .

Let Cd+1 be the sequence Cd, followed by Rd+1, and followed by the set of contraction rules of the pair nodes x ∈ Xd+1.
Define Gd+1 such that G →

Cd+1 Gd+1. Gd+1 satisfies (1).

SinceD(G) satisfies SDAG, themaximal depthm = max{d(x)|x ∈ D(G)} is well defined, and every pair node x ofG belongs
to Xm. Therefore, G →

Cm Gm and Gm satisfies (1). Since G[∀ →∵\] is a tree, by Lemma 2.2 so is Gm
[∀ →∵\] = Gm. It follows

that G �∗
c •. �

Define a paired graph G to be DR-connected if and only if, for any switching S of G, the switched graph S(G) is connected.
Lemmas 2.3 and 2.4 yields the following corollary.

Corollary 2.5. A paired graph G is DR-connected if and only if its dependency graph has a node s from which every node is
reachable.

Proof. An induction on the number of edges shows that G is DR-connected if and only if there exists G′
⊆ GDR-correct with

the same set of vertices. By Lemmas 2.3 and 2.4, G′ is DR-correct if and only if its dependency graph satisfies SDAG. Since
the dependency graph of G′ is a subgraph of the dependency graph of G, it follows that G is DR-connected if and only if its
dependency graph has a node s from which every node is reachable. �

Lemmas 2.3 and 2.4 and Theorems 1.5 and 1.12 imply the following.

Theorem 2.6 (Correctness Criteria). An MLL proof structure (S, λ) is an MLL proof net if and only if the following hold.

1. D(G(S,λ)) satisfies SDAG, and
2. G(S,λ)[∀ →∵\] is a tree.

AnMELL proof structure (S, B, λ) with boxes b1, . . . , bn is an MELL proof net if and only if the following hold.

1. ∀i ∈ {0, . . . , n}, D(Gi
(S,B,λ)) satisfies SDAG, and

2. ∀i ∈ {0, . . . , n}, Gi
(S,B,λ)[∀ →∵\] is a tree. �

2.2. NL-completeness of the criteria forMLL and MELL

Proposition 2.7. MLL-corr is NL-hard under constant-depth reductions.

Proof. We actually reduce SDAG to MLL-corr. Let G be a directed graph, and consider the proof structure (SG, λG) defined
as follows (see Fig. 4), and let G(SG,λG) be its associated paired graph.

1. To any vertex v of G, we associate a � node v with parent nodes vin and vout .
2. If there are i > 0 in-going edges to v, vin is a O-link of arity i, with parent nodes v1

in, . . . , v
i
in. v

1
in, . . . , v

i
in are axiom nodes.

If v has no in-going edge, vin is an axiom node, and λG contains a link (vin, v
2
in), where v2

in is a conclusion of SG.
3. If there are j > 0 outgoing edges from v, vout is a�-link of arity j, with parent links v1

out , . . . , v
j
out . v

1
out , . . . , v

j
out are axiom

nodes. If v has no outgoing edge, vout is an axiom node, and λG contains a link (vout , v
2
out), where v2

out is a conclusion of SG.
4. Let v � w be an edge of G, and assume that it is the kth outgoing edge from v and the lth in-going edge to w. To v � w

we associate a link (vk
out , w

l
in) in λG.

It is quite clear that this reduction can be computed by constant-depth circuits. We now claim that (SG, λG) is correct if
and only if G satisfies SDAG.

Assume that G contains a cycle. There exists then an elementary path p = x1 � · · · � xl, with xl � x1 ∈ G. Then, for any
edge xt � xt+1 ∈ p, there exists a switching of the pair node xt+1 in in G(SG,λG), which connects xt and xt+1. Similarly for the
edge xl � x1 ∈ G. Since p is elementary, these pair nodes are all different; therefore, there exists cyclic switching of G(SG,λG),
and (SG, λG) is not correct.

It is clear that, if G is acyclic, it has at least one node of arity 0. Moreover, if G is acyclic and has only one node of arity 0,
a proof by induction shows that G satisfies SDAG.

Assume therefore that G is acyclic and has at least two nodes, r and s, of arity 0. Let S ′ be any switching of G(SG,λG), and
assume that there exists an elementary path p from r to s in S ′. Let p′

= r, x1, . . . , xk, s be the sequence of non pair nodes of
p corresponding to vertices of G. p′ follows by construction edges of G, accordingly to their orientation or not. Since r and s
have arity 0, there exist three nodes xt , xt+1, xt+2 in p′ such that (xt � xt+1) and (xt+2 � xt+1) are edges of G. By construction

1950 P. Jacobé de Naurois, V. Mogbil / Theoretical Computer Science 412 (2011) 1941–1957

of G(SG,λG), xt and xt+2 are then premise nodes of the same pair node xt+1in in G(SG,λG), which contradicts that p is a path in
S ′. Therefore, S ′ is not connected, and (SG, λG) is not correct.

Assume now that G satisfies SDAG, and let d(v), the depth of a vertex v of G, be the length of the longest path from the
source s of G to v. Denote by Gd the subgraph of G consisting only in the vertices of depth less than d, and by G(SG,λG)d the
corresponding paired graph. It is easy to see that the rules of Fig. 1 can be turned into an n-ary version, and that G(SG,λG)d+1

can be obtained from G(SG,λG)d by these n-ary rules. By induction on d, it follows that (SG, λG) is correct. �

We denote by FL the class of functions computable in logarithmic working space (which is known to be stable under
composition). Let DepGRAPH be the function G → D(G), which associates its dependency graph to a paired graph G.
Lemma 2.8. DepGRAPH ∈ FL.
Proof. The following functions can easily be computed in FL.

• G, x ∈ G → (G[∀ →∵\]) \ {x}.
• G, x ∈ G → (G[∀ →∵]) \ {x}.
• G, x ∈ G, y ∈ G → (G[∀ →∵\]) \ {x, y}.

Consider now the following algorithm for DepGRAPH.

INPUT (G)
FOR ALL x pair node in G, with premise nodes xl and xr DO

IF USTCONN((G[∀ →∵]) \ {x}, xl, xr) THEN OUTPUT (s � x) ∈ D(G)
FOR ALL (x pair node in G, with premise nodes xl and xr , y pair node in G) DO

IF ¬USTCONN((G[∀ →∵\]) \ {x, y}, xl, xr)
AND USTCONN((G[∀ →∵\]) \ {x}, xl, xr) THEN

OUTPUT (y � {x}) ∈ D(G).

• USTCONN((G[∀ →∵]) \ {x}, xl, xr) tests whether there exists an elementary path px = xl − · · · − xr such that x ∉ px and,
for all pair nodes y in G, y ∉ px.

• ¬ USTCONN((G[∀ →∵\]) \ {x, y}, xl, xr) tests whether any elementary path px = xl − · · · − xr such that x ∉ px contains y.
• USTCONN((G[∀ →∵\]) \ {x}, xl, xr) tests whether there exists a path px = xl − · · · − xr in G′ such that x ∉ px. From the

previous point, if such a path px exists, y ∈ px.

It follows that this algorithm computes DepGRAPH. Since USTCONN ∈ L [19], this algorithm belongs to FLL (the class of
functions computable in logspace with oracles in L). Since FLL = FL, DepGRAPH ∈ FL. �

Proposition 2.9. MELL − corr ∈ NL.
Proof. Let (S, B, λ) be an MELL-proof structure with boxes b1, . . . , bn. Each function (S, B, λ), i ∈ {0, . . . , n} → Gi

(S,B,λ)

can easily be computed in FL. Checking that Gi
(S,B,λ)[∀ →∵\] is a tree is doable in L since IT ∈ L. Checking that D(Gi

(S,B,λ))
satisfies SDAG can be done in NL, by composing the function DepGRAPH in FL (Lemma 2.8) with an NL algorithm for
SDAG (Theorem 1.22).

Since the number of paired graphs Gi
(S,B,λ) is linearly bounded, it suffices to sequentially perform these tasks for

i = 0, . . . , n, with a counter i of logarithmic size. �

Note that the previous best algorithms for MELL-corr [14,7] are not likely to be implemented in logarithmic space, since
they require on-line modification of the structure they manipulate. The purpose of our criterion of Theorem 2.6 is precisely
that it allows a space-efficient implementation, at the cost of nonlinear (actually quadratic) time execution.

For MLL-corr, the linear-time algorithms for essential nets of [17,18] are actually NL algorithms. However, they do not
yield NL algorithms for MLL proof structures, since the reduction they use is not computable in logarithmic space.

3. MALL

This section is devoted to the proof of the NL-completeness of MALL-corr. The situation for MALL differs quite a lot from
the situation for MLL and MELL in the sense that the size of a sequent and of a corresponding proof structure – or proof
net – may be of different order. For MLL and MELL, it is clear that the size of a proof structure is linear in the size of its
skeleton. Yet, for MALL, the situation is more complex: while some MALL proof structures and proof nets have size linear in
the size of their skeleton (e.g., pure MLL proof structures), others have size exponential in the size of their skeleton. Define
the following correct sequents:

Γ1 = A⊥

1 � · · · � A⊥

n , A1N· · · NAn

Γ2 = A⊥ � · · · � A⊥, AN· · · NA
Σ1 = A⊥

1 � · · · � A⊥

n , A1NA1, . . . , AnNAn

Σ2 = A⊥ � · · · � A⊥, ANA, . . . , ANA.

For each of these sequents, the size of the corresponding cut-free skeleton is linear in n. The following table shows, for
a cut-free MALL skeleton for each of these sequents, its number of additive resolutions, N-resolutions and possible links.

P. Jacobé de Naurois, V. Mogbil / Theoretical Computer Science 412 (2011) 1941–1957 1951

Fig. 5. The MALL proof net on Γ1 , and an example of proof net on Γ2 , with n = 3.

Fig. 6. The MALL proof net (Σ1, Θ1) on Σ1 , with Θ1 =
2n

i=1 λi .

Fig. 7. An example of MALL proof net (Σ2, Θn!) on Σ2 , with Θn! =
2n

i=1 λi . Note that the set Θ1 of Fig. 6 yields another proof net (Σ2, Θ1) on Σ2 , as well
as the n! possible combination of choices among the order in which the premises of the � node are linked to the N nodes.

The last two lines show the number of links in any cut-freeMALL proof net, and the number of different cut-freeMALL proof
nets for each of these sequents.

sequent Γ1 Γ2 Σ1 Σ2

add-resolutions n2 n2 2n 2n

N-resolutions n n 2n 2n

links n n2 2n n!2n

|Θ| n n 2n 2
Θ 1 n2 1 n!

This table illustrates how some very simple MALL sequents can yield very large MALL proof nets. These proof nets are
exemplified in Figs. 5–7. Here, the reader should keep in mind that the input to the MALL-corr problem is actually an
MALL proof structure, of size maybe much larger than the size of the corresponding sequent. Recall from Theorem 1.17
that an MALL proof structure is a positive input to MALL-corr if and only if it satisfies Conditions (MLL), (RES) and (TOG).
The NL-hardness of MALL-corr follows directly from the NL-hardness of MLL-corr (since MLL is a subsystem of MALL).
The NL-membership of Condition (MLL) follows directly from the NL-membership of MELL-corr (and thus of MELL-corr).
Therefore, proving the NL-membership of MALL-corr requires proving the NL-membership of (RES) and (TOG). We exhibit
in this section algorithms for checking non-deterministically (RES) and (TOG) in space logarithmic in the size of the proof
structure, which, in some cases, is actually polynomial in the size of the sequent.

1952 P. Jacobé de Naurois, V. Mogbil / Theoretical Computer Science 412 (2011) 1941–1957

3.1. Checking (RES)

We recall Condition (RES) of Theorem 1.17. For every N-resolutionW of S , there exists a unique λ ∈ Θ such that λ ⊑ W .
Let us illustrate the difficulty in checking (RES) on a simple example. Let us consider the proof structure (Σ1, Θ), where

Σ1 is as above.
A⊥

1 �· · ·�A⊥
n , A1NA1, . . . , AnNAn, andΘ is a subset ofΘ1 of Fig. 6 containing n⌈log(n)⌉ linkings. The size of (Σ1, Θ) is therefore

O(n⌈log(n)⌉).
We have seen that the number of N-resolutions of Σ1 is 2n. Enumerating (and explicitly describing) all N-resolutions

requires at least Ω(n) space, and is not feasible in space O(log(n⌈log(n)⌉)) = O(log(n)2). Therefore an NL algorithm for (RES)
may not proceed by first plainly enumerating all N-resolutions.

The idea of our algorithm is to define a notion of distance of edition on the N-resolutions such that one can pass from
any N-resolution to any other N-resolution with intermediate steps of distance at most 1 (Condition L1). Lemma 3.6 shows
that (RES) fails if there exists a N-resolution W with λ ⊑ W at distance 1 to a N-resolution W ′ with no λ′

⊑ W ′ (Condition
L3). Note however that, as on (Σ1, Θ), the working space may not be large enough to describe the N-resolutions explicitly:
instead, a N-resolutionW with λ ⊑ W is implicitly described by λ. The difficulty then is to describe a N-resolutionW ′ with
no λ′

⊑ W ′. We establish in Lemma 3.9 that (RES) fails if there exists a N-resolution W with λ ⊑ W at distance 1 to a
N-resolution W ′ with no λ′

⊑ W ′, where moreover W ′ can be implicitly described by λ and some N node (Condition L4).
Our algorithm enumerates (in logarithmic space) the λ and the N nodes in search of such a configuration.

Definition 3.1 (Condition L1). Let (S, Θ) be an MALL proof structure.
For any N-resolutionW of S , let switchW : {xN : N node of S} → {l, r} be the following function:

switchW (xN) =


l if xlN ∈ W or xN ∉ W
r if xrN ∈ W .

Let WS be the set of N-resolutions of S.
Let WΘ = {W ∈ WS : ∃λ ∈ Θ, λ ⊑ W }.
We define the distance Dist on WS by

Dist(W ,W ′) = |{xN N node of S : switchW (xN) ≠ switchW ′(xN)}|.

Let W ⊆ WS . We say that W satisfies Condition L1 if and only if

∀W0,Wk ∈ W ∃W1, . . . ,Wk−1 ∈ W s.t. Dist(Wi,Wi+1)0≤i<k≤1.

Lemma 3.2. WS satisfies condition L1.

Proof. By induction on the skeleton S. �

Definition 3.3 (Condition L2). Let (S, Θ) be an MALL proof structure.
(S, Θ) is said to satisfy Condition L2 if and only if, ∀y� �-nodes in S , ∀λ1, λ2 ∈ Θ that toggle y�, there exists a N node

xN also toggled by {λ1, λ2}.

Lemma 3.4. If (S, Θ) is anMALL proof net, then it satisfies Condition L2.

Proof. By induction on (S, Θ), along Definition 1.15. The only critical case is that of a N rule:
if (S ⊎ SA, ΘA), where S (respectively SA) has conclusions Γ (respectively A) and (S ⊎ SB, ΘB), where SB has conclusion B are
MALL proof nets, then (S ⊎ S ′, ΘA ⊎ ΘB), where S ′ is SA ⊎ SB extended with a N-node of premises A and B, is an MALL proof
net with conclusions Γ , ANB.

Two cases arise:

1. Assume there exist a � node y� ∈ S , λ ∈ ΘA, and λ′
∈ ΘA such that λ, λ′ toggle y�. Then the induction hypothesis on

(S ⊎ SA, ΘA) ensures that there exists a N node xN ∈ S ⊎ SA also toggled by λ, λ′. Similarly for λ ∈ ΘB, λ′
∈ ΘB.

2. Assume there exist a � node y� ∈ S , λ ∈ ΘA, and λ′
∈ ΘB such that λ, λ′ toggle y�. Then the N node of premises A and

B in S ′ is also toggled by λ, λ′. �

Definition 3.5 (Condition L3). Let (S, Θ) be an MALL proof structure.
Let λ ∈ Θ , and define S �N λ = {W ∈ WS : λ ⊑ W }.
Let xN be a N node in S.

(λ, xN) are said to satisfy Condition L3 in (S, Θ) if and only if

∃W λ
+

∈ S �N λ,W λ
−

∈ WS \ WΘ s.t. Dist(W λ
+
,W λ

−
) = 1 and switchWλ

+
(xN) ≠ switchWλ

−
(xN).

Lemma 3.6. Assume that (S, Θ) is an MALL proof structure. Then, (S, Θ) satisfies (RES) of Theorem 1.17 if and only if the
following hold.

P. Jacobé de Naurois, V. Mogbil / Theoretical Computer Science 412 (2011) 1941–1957 1953

1. ∀λ, λ′
∈ Θ, λ ≠ λ′

⇒ S � λ ≠ S � λ′, and
2. ∀λ ∈ Θ, ∀xN N node in S , (λ, xN) does not satisfy L3 in (S, Θ).

Proof. 1. LetW ∈ WΘ and let λ ∈ Θ s.t. λ ⊑ W . By induction onW , if there exists λ′
≠ λ s.t. λ′

⊑ W , then S � λ = S � λ′.
It follows that (1) above is equivalent to the unicity, for any N-resolutionW of S , of a λ ∈ Θ such that λ ⊑ W .

2. Assume that there exists a N-resolution W of S s.t. ∀λ ∈ Θ , λ ⋢ W . Then, WΘ (WS . Assume that Θ ≠ ∅; then,
WΘ ≠ ∅. Therefore, there exist W+ ∈ WΘ and W− ∈ WS \ WΘ . By Lemma 3.4, there then exist W1, . . . ,Wk ∈

W s.t. Dist(W+,W1) ≤ 1, Dist(Wi,Wi+1)0≤i<k ≤ 1, and Dist(Wk,W−) ≤ 1. Since any of theWi belongs either to WΘ or to
WS \ WΘ , there existW ′

+
,W ′

−
∈ {W+,W1, . . . ,Wk,W−} such that Dist(W ′

+
,W ′

−
) = 1,W ′

+
∈ WΘ andW ′

−
∈ WS \ WΘ .

Let λ ∈ Θ such that λ ⊑ W ′
+
, and let xN be the N node such that switchW ′

+
(xN) ≠ switchW ′

−
(xN). Clearly, (λ, xN) satisfy

Condition L3.
Conversely, if there exist λ ∈ Θ and xN a N node in S such that (λ, xN) satisfies Condition L3 in (S, Θ), then there exists
a N-resolution W of S s.t. ∀λ ∈ Θ , λ ⋢ W . It follows that (2) above is equivalent to the existence, for any N-resolution
W of S , of a λ ∈ Θ such that λ ⊑ W . �

Definition 3.7 (Condition L4). Let (S, Θ) be an MALL proof structure.
Let xN be a N node in S. Define

W l
xN

= {W ∈ WS s.t. ∀x′

N s.t. there exists a path x′

N � · · · � xlN, switchW (x′

N) = l}

Wr
xN

= {W ∈ WS s.t. ∀x′

N s.t. there exists a path x′

N � · · · � xrN, switchW (x′

N) = l}

Let λ ∈ Θ , and define

Mirror(λ, xN) = {W ∈ WS s.t. ∃W ′
∈ S �N λ ∩ W l

xN
∩ Wr

xN
: Dist(W ,W ′) = 1 and switchW (xN) ≠ switchW ′(xN)}.

(λ, xN) are said to satisfy Condition L4 in (S, Θ) if and only if

∀λ′
∈ Θ, ∀W ∈ Mirror(λ, xN), λ′

⋢ W .

Lemma 3.8. Assume that (S, Θ) is an MALL proof structure satisfying Condition L2. Let λ ∈ Θ and xN be a N node in S such
that the following hold.

1. (λ, xN) satisfies Condition L3 in (S, Θ), and
2. ∀y� � node in S � λ, ∀λ′

∈ Θ such that λ, λ′ toggle y�, xN is not toggled by λ, λ′.

Then, (λ, xN) satisfies Condition L4 in (S, Θ).

Proof. Let y� be a � node in S � λ. Without loss of generality, assume that yl� ∈ S � λ and xlN ∈ S � λ. Assume that (λ, xN)
satisfies Condition L3 in (S, Θ):

∃W λ
+

∈ S �N λ,W λ
−

∈ WS \ WΘ s.t. Dist(W λ
+
,W λ

−
) = 1 and switchWλ

+
(xN) ≠ switchWλ

−
(xN).

Let θλ = {λi ∈ Θ : λi ⊑ Wi ∈ Mirror(λ, xN)}.
Assume by contradiction that θλ ≠ ∅.

Let us show by contradiction that, for all λ′
∈ θλ, yr� ∉ S � λ′. Assume that ∃λ′

∈ θλ, yr� ∈ S � λ′. Then λ, λ′ toggle y�.
By Condition L2, there exists a N node x′

N ≠ xN also toggled by λ, λ′. Assume without loss of generality that x′
N

l
∈ S � λ

and x′
N

r
∈ S � λ′.

Since x′
N

l
∈ S � λ, for all W ∈ Mirror(λ, xN), switchW (x′

N) = l. Since x′
N

r
∈ S � λ′, for any W ′

∈ Mirror(λ, xN) s.t.
λ′

⊑ W ′, switchW ′(x′
N) = r: contradiction.

Therefore, for all λ′
∈ θλ, yr� ∉ S � λ′.

Let λ′
∈ θλ and let x′

N (respectively y′
�) be anyN node (respectively� node) such that there exists no path x′

N � · · · � xN
(respectively y′

� � · · · � xN). Then, by induction on S ,

x′

N ∈ S � λ ⇒ x′

N ∈ S � λ′, y′

� ∈ S � λ ⇒ y′

� ∈ S � λ′,

x′

N
l
∈ S � λ ⇒ x′

N
l
∈ S � λ′, y′

�
l
∈ S � λ ⇒ y′

�
l
∈ S � λ′,

x′

N
r
∈ S � λ ⇒ x′

N
r
∈ S � λ′, y′

�
r
∈ S � λ ⇒ y′

�
r
∈ S � λ′.

It follows that λ′
⊑ W λ

−
: contradiction. �

Lemma 3.9. Assume (S, Θ) is an MALL proof structure satisfying L2. Let λ ∈ Θ and let xN be a N node in S such that

1. (λ, xN) satisfy Condition L3 in (S, Θ), and
2. ∃y� � node in S � λ, and λ′

∈ Θ such that λ, λ′ toggle both y� and xN.

Then, there exists x′
N N node in S such that (λ′, x′

N) satisfies Condition L4 in (S, Θ).

1954 P. Jacobé de Naurois, V. Mogbil / Theoretical Computer Science 412 (2011) 1941–1957

Proof. By induction on the maximal number of N and � nodes traversed along a path x � · · · � xN or x � · · · � y� in S.
Since S is acyclic, this number is well defined. Assume that (λ, xN) satisfies Condition L3 in (S, Θ):

∃W λ
+

∈ S �N λ,W λ
−

∈ WS \ WΘ s.t. Dist(W λ
+
,W λ

−
) = 1 and switchWλ

+
(xN) ≠ switchWλ

−
(xN).

Without loss of generality, assume that yl� ∈ S � λ and xlN ∈ S � λ.
Let θλ = {λi ∈ Θ : λi ⊑ Wi ∈ Mirror(λ, xN)}. If there is no N or � node along any path x � · · · � xN or x � · · · � y�,

θλ = ∅. If θλ = ∅, (λ, xN) satisfies Condition L4 in (S, Θ). Assume in the following that θλ ≠ ∅.
1. Let y′

� be a � node in S � λ such that there exists no path y′
� � · · · � y� and no path y′

� � · · · � xN.
Let us show by contradiction that y′

� is toggled by no (λ, λi), λi ∈ θλ.
Assume that y′

� is toggled by (λ, λi), λi ∈ θλ, and, without loss of generality, that y′
�

l
∈ S � λ, y′

�
r
∈ S � λi. Then, by

Condition L2, there exists a N node x′
N ∈ S � λ∩ S � λi toggled by (λ, λi), and, without loss of generality, x′

N
l
∈ S � λ and

x′
N

r
∈ S � λi. Let W ′

i be any N-resolution such that λi ⊑ W ′

i : ∀W ∈ S �N λ ∩ W l
xN

∩ Wr
xN

xlN ∈ W , x′
N

l
∈ W , xrN ∈ W ′

i ,
x′

N
r

∈ W ′

i , and Dist(W ,W ′) ≥ 1. Therefore, W ′

i cannot possibly be in Mirror(λ, xN), which contradicts the hypothesis
that y′

� is toggled by (λ, λi), λi ∈ θλ.
2. By Condition L3, ∀λi ∈ θλ, ∃(xi, yi) ∈ λi : xi ∉ W λ

−
. Let us show that, ∀(xi, yi) ∈ λi ∈ θλ, xi ∉ W λ

−
, there exists a path

xi � · · · � yr� or a path xi � · · · � xrN.
Assume that there exists no such path. For any � node y′

� such that there exists a path xi � · · · � y′
�, there exists

no path y′
� � · · · � y� and no path y′

� � · · · � xN. By (1) above, y′
� is toggled by no (λ, λi), λi ∈ θλ. Moreover, for

any N node x′
N such that there exists a path xi � · · · � x′

N, there exists no path x′
N � · · · � xN. By definition of θλ, x′

N
is then toggled by no (λ, λi), λi ∈ θλ, and xi ∈ S � λ. Therefore, ∀W ′

∈ S �N λ, xi ∈ W ′. By Condition L3, there exists
W λ

+
∈ S �N λ s.t. Dist(W λ

+
,W λ

−
) = 1 and switchWλ

+
(xN) ≠ switchWλ

−
(xN). Since xi ∈ W λ

+
, and since there exists no path

xi � · · · � xN, it follows that xi ∈ W λ
−
: contradiction.

3. By hypothesis, W λ
+

∈ S �N λ, and switchWλ
+
(xN) = l. Since Dist(W λ

+
,W λ

−
) = 1 and switchWλ

−
(xN) = r , it follows that

W λ
+

∈ W l
xN

∩ Wr
xN

, and thereforeW λ
−

∈ Mirror(λ, xN).
4. It is clear that S �N λ, W l

xN
and Wr

xN
satisfy condition L1. Therefore, so doesMirror(λ, xN). SinceW λ

−
∈ Mirror(λ, xN) and

θλ ≠ ∅, there exist W λi
+ ,W λi

− ∈ Mirror(λ, xN), λi ∈ θλ such that λi ⊑ W λi
+ , W λi

− ∈ WS \ WΘ and Dist(W λi
+ ,W λi

−) = 1. Let
x′

N be the unique N node in S such that switch
W

λi
+

(x′
N) ≠ switch

W
λi
−

(x′
N). By (2) above, there exists a path x′

N � · · · � y�.

If there exists a � node y′
� in S � λi and λj ∈ θλ such that λi, λj toggle both x′

N and y′
�, by (1) above, there exists a path

y′
� � · · · � y� or a path y′

� � · · · � xN. Therefore we can apply the induction hypothesis to conclude that (λ′, x′
N)

satisfies Condition L4 in (S, Θ). �

Proposition 3.10. Assume that (S, Θ) is anMALL proof structure. Then, (S, Θ) satisfies (RES) of Theorem 1.17 if and only if the
following hold.
1. ∀λ, λ′

∈ Θ, λ ≠ λ′
⇔ S � λ ≠ S � λ′,

2. (S, Θ) satisfies Condition L2, and
3. ∀λ ∈ Θ, ∀xN N node in S , (λ, xN) does not satisfy L4 in (S, Θ).

Proof. Apply Lemmas 3.6, 3.8 and 3.9. �

A consequence of Proposition 3.10 is an NL algorithm deciding whether a given MALL proof structure satisfies (RES).
Indeed, by Proposition 2.9, (1) can be checked in NL, and Conditions L2 and L4 can easily be checked in NL by parsing the set
of linkings and the skeleton.

3.2. Checking (TOG)

We recall Condition (TOG) of Theorem 1.17.
For every Λ ⊆ Θ of two or more linkings, Λ toggles a N node xN such that xN does not belong to any switching cycle

of HS�Λ.
Checking Condition (TOG) in non-deterministic logarithmic space involves two difficulties, which we address in this

section.
1. The number of setsΛ ⊆ Θ of two ormore linkings is exponential in the size ofΘ , i.e., exponential in the size of the input

in the worst case. Consider for instance the sequent Γ = AN· · · NA, A⊥ of Fig. 8: a proof net (Γ , Θ) contains n linkings,
each linking containing a single link. The number of sets Λ ⊆ Θ of two or more linkings is then 2n

− n − 1. Clearly,
there is no possibility to enumerate all the sets Λ ⊆ Θ of two or more linkings in logarithmic space.2 Lemma 3.12 below
shows that it is actually enough to consider only a quadratic number of well-chosen such sets of linkings.

2 It is mentioned in [9] that it suffices to check (TOG)merely for saturated setsΛ of linkings only, namely, such that any strictly larger subset ofΘ toggles
more N nodes than Λ. Note however that the saturated sets of linkings are also exponentially many, and cannot be enumerated in logspace.

P. Jacobé de Naurois, V. Mogbil / Theoretical Computer Science 412 (2011) 1941–1957 1955

Fig. 8. A proof net (Γ , Θ), with Θ =
n

i=1 λi .

2. Given a set Λ ⊆ Θ of two or more linkings and a N node xN toggled by Λ, it remains to be checked whether xN belongs
to a switching cycle of HS�Λ. In the worst case, the number of switched graphs of HS�Λ to be investigated may be also
exponential in the size of the input. Moreover, it is unclear whether HS�Λ enjoys properties such as DR-correctness that
allow space-efficient algorithms. Lemma 3.17 below shows that the switching cycles of HS�Λ are actually the switching
cycles of a graph IS�Λ which, in turns, enjoys the property of being DR-connected.

The two points above are necessary stepping stones towards an NL algorithm for condition (TOG) exhibited in
Proposition 3.18.

Definition 3.11. Let {λ1, λ2} ⊆ Θ; we define Θλ1,λ2 = {λ ∈ Θ : S � λ1 ∩ S � λ2 ⊆ S � λ}.

Lemma 3.12. Let (S, Θ) be an MALL proof structure satisfying (RES).
(S, Θ) satisfies (TOG) if and only if, for all {λ1, λ2} ⊆ Θ , there exists a N node xN toggled by λ1, λ2 such that xN does not

belong to any switching cycle of HS�Θλ1,λ2
.

Proof. In a first step, we show by induction on S \ (S � λ1 ∩ S � λ2) that, for all Λ ⊆ Θλ1,λ2 with at least two linkings, Λ
toggles a N node x′

N such that x′
N does not belong to any switching cycle of HS�Λ.

Let λ1, λ2 ∈ Θ , let xN be a N-node toggled by {λ1, λ2} and let Λ ⊆ Θλ1,λ2 . Then, HS�Λ ⊆ HS�Θλ1,λ2
, and the switching

cycles of HS�Λ are switching cycles of HS�Θλ1,λ2
.

1. IfΛ toggles xN, then xN belongs to no switching cycle ofHS�Λ (otherwise itwould belong to a switching cycle ofHS�Θλ1,λ2
).

2. Assume that Λ does not toggle xN. Then, (S � λ1 ∩ S � λ2) (


λ∈Λ S � λ.
LetW l

Λ be the N-resolution of S defined as follows:
λ∈Λ

S � λ ⊆ W l
1, and

∀N node x′
N ∈ S, x′

N ∉


λ∈Λ

S � λ ⇒ x′r
N is erased inW l

1,

and letW r
Λ be defined as follows:

λ∈Λ

S � λ ⊆ W r
1 , and

∀N node x′
N ∈ S, x′

N ∉


λ∈Λ

S � λ ⇒ x′ l
N is erased inW r

1 .

By Condition (RES), there exist λl, λr
∈ Θ s.t. λl

⊑ W l
Λ and λr

⊑ W r
Λ. Then, clearly, Λ ⊆ Θλl,λr (Θλ1,λ2 . Since

|Θλl,λr | > 2, by Condition (RES), Θλl,λr toggles a N node x′
N ≠ xN. By construction, x′

N is also toggled by Λ. The
induction hypothesis on Θλl,λr and the arguments of (1) above yield that x′

N belongs to no switching cycle of HS�Λ.

The second step is to show that there exist λ1, λ2 ∈ Θ s.t. Θ = Θλ1,λ2 . Consider Wl the N-resolution of S , where all right
premises of N nodes are erased, andWr the onewhere all left premises of N nodes are erased. By Condition (RES), there exist
λ1, λ2 ∈ Θ such that λ1 ⊑ Wl and λ2 ⊑ Wr . It is clear that, for all λ ∈ Θ , S � λ1∩ S � λ2 ⊆ S � λ. Therefore,Θ ⊆ Θλ1,λ2 . �

Definition 3.13. Let (S, Θ) be an MALL proof structure.
Let xN be a N node in S. xN is said to be environment free if, for all λ ∈ Θ , and for all links (a, b) ∈ λ, there exists a path

a � · · · � xN if and only if there exists a path b � · · · � xN. If xN is not environment free, it is said to be environment linked.

Lemma 3.14. If (S, Θ) is anMALL proof net then, for allNnodes xN, xN is environment free if and only if, for any sequentialization
of (S, Θ), any N-rule applied on xN has an empty environment Γ .

Proof. Straightforward proof by induction. �

Definition 3.15. Let (S, Θ) be an MALL proof structure.
Let IS�Λ be GS�Λ extended with all admissible jump edges for all {λ1, λ2} ⊆ Λ and where C(IS�Λ) contains the premise

– and jump – edges incident to all O nodes and environment-linked N nodes of S � Λ, and the jump edges only incident to
all environment-free N nodes of S � Λ.

1956 P. Jacobé de Naurois, V. Mogbil / Theoretical Computer Science 412 (2011) 1941–1957

Lemma 3.16. If (S, Θ) is anMALL proof net then, for all {λ1, λ2} ⊆ Θ , IS�Θλ1,λ2
is DR-connected.

Proof. We actually prove the lemma for the graph IS�Θλ1,λ2
without jumps. An easy graph-theoretic proof by induction

shows that adding the jumps does not DR-disconnect the paired graph.
The proof is by induction on (S, Θ), along Definition 1.15. The only critical case is that of a N rule on Γ , ANB, where

the N node xN introduced by the rule is environment linked and is toggled by λ1, λ2. Assume without loss of generality that
xlN ∈ S � λ1 and xrN ∈ S � λ2.

By Definition 1.15, Θ = ΘA ⊎ ΘB, and S is SΓ ⊎ SA ⊎ SB (with respective conclusions Γ , A and B) extended with xN, and
(SΓ ⊎ SA, ΘA), (SΓ ⊎ SB, ΘB) are both MALL proof nets, and by Lemma 3.14, SΓ ≠ ∅.

Let ΛA = {λ ∈ ΘA : SΓ � λ1 ∩ SΓ � λ2 ⊆ SΓ � λ} and ΛB = {λ ∈ ΘB : SΓ � λ1 ∩ SΓ � λ2 ⊆ SΓ � λ}. Then, clearly,
Θλ1,λ2 = ΛA ⊎ ΛB, λ1 ∈ ΛA and λ2 ∈ ΛB.

LetW l
1 be the N-resolution of S defined as follows:

S � λ1 ∩ S � λ2 ⊆ W l
1,

∀N node x′
N ∈ S, x′

N ∉ S � λ1 ∩ S � λ2 ⇒ x′r
N is erased inW l

1, and xrN is erased in W l
1,

and letW r
1 be defined as follows:

S � λ1 ∩ S � λ2 ⊆ W r
1 ,

∀N node x′
N ∈ S, x′

N ∉ S � λ1 ∩ S � λ2 ⇒ x′ l
N is erased inW r

1 , and xrN is erased inW r
1 .

Then, by Condition (RES), there exist λl
1, λ

r
1 ∈ Θ s.t. λl

1 ⊑ W l
1 and λr

1 ⊑ W r
1 . Moreover, λl

1 ∈ ΘA, λr
1 ∈ ΘA and

S � λl
1 ∩ S � λr

1 = S � λ1 ∩ S � λ2. Therefore, ΛA = Θλl1,λ
r
1
.

Similarly, there exist λl
2, λ

r
2 ∈ Θ s.t. ΛB = Θλl2,λ

r
2
.

By induction hypothesis, IS�Θλ1,λ2
= IS�Θ

λl1,λr1
∪ IS�Θ

λl2,λr2
, where IS�Θ

λl1,λr1
and IS�Θ

λl2,λr2
are both DR-connected.

Moreover, by Condition (RES), neither IS�Θ
λl1,λr1

nor IS�Θ
λl2,λr2

contains a unary couple of edges except for xN. Therefore,

for any switching S of IS�Θλ1,λ2
, xlN is connected through S(IS�Θ

λl1,λr1
) to some vertex y ∈ IS�Θ

λl1,λr1
∩ IS�Θ

λl2,λr2
≠ ∅, and back

to xrN through S(IS�Θ
λl2,λr2

). �

Lemma 3.17. Let (S, Θ) be an MALL proof structure satisfying (RES) and let Λ ⊆ Θ with at least two linkings.
Λ toggles a N node xN such that xN belongs to a switching cycle of IS�Λ if and only if it belongs to a switching cycle of HS�Λ.

Proof. Condition (RES) implies that no premise edge of any environment-free N node belongs to any switching cycle of
HS�Λ. Therefore, the switching cycles of HS�Λ are switching cycles of IS�Λ; hence the ‘‘if’’ direction. The ‘‘only if’’ direction
proceeds from the fact that the switching cycles of IS�Λ are switching cycles of HS�Λ. �

Lemmas 3.12 and 3.17 yield the following proposition.

Proposition 3.18. Let (S, Θ) be anMALL proof structure satisfying (RES). (S, Θ) satisfies (TOG) iff, for all {λ1, λ2} ⊆ Θ , Θλ1,λ2
toggles a N node xN such that xN does not belong to any switching cycle of IS�Θλ1,λ2

. �

Proposition 3.19. Let (S, Θ) be an MALL proof structure satisfying (RES) and (MLL). The following algorithm decides whether
(S, Θ) satisfies (TOG) in non-deterministic logarithmic space:

FOR ALL λ1, λ2 ∈ Θ

COMPUTE IS�Θλ1,λ2
,

COMPUTE D(IS�Θλ1,λ2
) the dependency graph of IS�Θλ1,λ2

,
IF ∀s ∈ D(IS�Θλ1,λ2

), ∃x ∈ D(IS�Θλ1,λ2
) such that ¬STCONN(s, x)

THEN REJECT
ELSE
LET tog= false
FOR ALL N node xN in S

LET IxN be IS�Θλ1,λ2
[∀ →∵\] without any premise – or jump – edge to xN,

IF no premise-argument or jump-argument of xN is connected to xN in IxN
THEN tog=true

END FOR ALL
END IF
IF tog=false THEN REJECT

END FOR ALL
ACCEPT

Proof. By Proposition 3.19, (S, Θ) satisfies (TOG) if and only if, for all {λ1, λ2} ⊆ Θ , Θλ1,λ2 toggles a N node xN such
that xN does not belong to any switching cycle of IS�Θλ1,λ2

. By Lemma 3.16, if (S, Θ) satisfies (TOG), then IS�Θλ1,λ2
is DR-

P. Jacobé de Naurois, V. Mogbil / Theoretical Computer Science 412 (2011) 1941–1957 1957

connected, and, by Corollary 2.5, its dependency graph has a node s from which every node is reachable. Now, if IS�Θλ1,λ2
is

DR-connected, a N node xN belongs to a switching cycle of IS�Θλ1,λ2
if and only if it belongs to a cycle of IS�Θλ1,λ2

[∀ →∵\];
therefore the algorithm above decides whether (S, Θ) satisfies (TOG).

It is clear that the enumeration of the λ1, λ2 ∈ Θ and the computation of IS�Θλ1,λ2
and D(IS�Θλ1,λ2

) can be performed in
logarithmic space. Since STCONN ∈ NL, the whole algorithm works in NL. �

Propositions 2.7, 2.9, 3.10 and 3.19 yield the following result.

Theorem 3.20. MLL-corr, MELL-corr and MALL-corr are NL-complete under constant-depth reductions. �

References

[1] A.K. Chandra, L.J. Stockmeyer, U. Vishkin, Constant depth reducibility, SIAM J. Comput. 13 (2) (1984) 423–439.
[2] V. Danos, 1990. Une application de la logique linéaire à l’étude des processus de normalisation (principalement de λ-calcul), Ph.D. Thesis, Université

Denis Diderot, Paris 7.
[3] V. Danos, L. Regnier, The structure of multiplicatives, Arch. Math. Logic 28 (3) (1989) 181–203.
[4] L.T. di Falco, The additive multiboxes, Ann. Pure Appl. Logic 120 (1–3) (2003) 65–102.
[5] J.-Y. Girard, Linear logic, Theoret. Comput. Sci. 50 (1) (1987) 1–102.
[6] J.-Y. Girard, Proof-nets: the parallel syntax for proof-theory, in: P. Agliano, A. Ursini (Eds.), Logic and Algebra, vol. 180, Marcel Dekker, New York, 1996.
[7] S. Guerrini, Correctness of multiplicative proof nets is linear, in: Proc. of the Annual Symp. on Logic in Computer Science, LICS’99, IEEE Computer

Society Press, 1999, pp. 454–463.
[8] S. Guerrini, A. Masini, Parsing MELL proof nets, Theoret. Comput. Sci. 254 (1–2) (2001) 317–335.
[9] D.j.d. Hughes, R.j. van Glabbeek, Proof nets for unit-free multiplicative-additive linear logic, ACM Trans. Comput. Log. 6 (4) (2005) 784–842.

[10] N. Immerman, Nondeterministic space is closed under complementation, SIAM J. Comput. 17 (5) (1988) 935–938.
[11] B. Jenner, K.-J. Lange, P. McKenzie, Tree isomorphism and some other complete problems for deterministic logspace, DIRO 1059, Univ. de Montréal.,

1997.
[12] N.D. Jones, Y.E. Lien, W.T. Laaser, New problems complete for nondeterministic logspace, Math. Syst. Theory 10 (1976) 1–17.
[13] M.I. Kanovich, Horn programming in linear logic is NP-complete, in: Proc. of the Annual Symp. on Logic in Computer Science, LICS’92, IEEE Computer

Society Press, 1992, pp. 200–210.
[14] Y. Lafont, From proof-nets to interaction nets, in: J.-Y. Girard, Y. Lafont, L. Regnier (Eds.), in: Advances in Linear Logic, vol. 222, Cambridge University

Press, 1995, pp. 225–247.
[15] H.G. Mairson, Normalization bounds for multiplicative linear logic are axiom-sensitive, presentation at GEOCAL’06 Workshop of Implicit

Computational Complexity, 2006. Slides available at http://www-lipn.univ-paris13.fr/~baillot/GEOCAL06/SLIDES/Mairson.pdf.
[16] P.-A.Melliès, A topological correctness criterion for non-commutative logic, in: LondonMathematical Society LectureNotes Series, vol. 316, Cambridge

University Press, 2004.
[17] A. Murawski, L. Ong, Dominator trees and fast verification of proof nets, in: Proc. of the Annual Symp. on Logic in Computer Science, LICS’00, IEEE

Computer Society Press, 2000, pp. 181–191.
[18] A. Murawski, L. Ong, Fast verification of MLL proof nets via IMLL, ACM Trans. Comput. Log. 7 (3) (2006) 473–498.
[19] O. Reingold, Undirected st-connectivity in log-space, in: H.N. Gabow, R. Fagin (Eds.), STOC, ACM, 2005, pp. 376–385.
[20] R. Szelepcsényi, The method of forcing for nondeterministic automata, Bull. EATCS 33 (1987) 96–99.

http://www-lipn.univ-paris13.fr/~baillot/GEOCAL06/SLIDES/Mairson.pdf

	Correctness of linear logic proof structures is N L -complete
	Introduction
	Background
	MLL and proof structures
	MELL and proof structures
	MALL
	Complexity classes and related problems

	MLL and MELL
	New correctness criteria for MLL and MELL
	NL-completeness of the criteria for MLL and MELL

	MALL
	Checking (RES)
	Checking (TOG)

	References

