756 research outputs found

    On determinism versus nondeterminism for restarting automata

    Get PDF
    AbstractA restarting automaton processes a given word by executing a sequence of local simplifications until a simple word is obtained that the automaton then accepts. Such a computation is expressed as a sequence of cycles. A nondeterministic restarting automaton M is called correctness preserving, if, for each cycle u⊱Mcv, the string v belongs to the characteristic language LC(M) of M, if the string u does. Our first result states that for each type of restarting automaton X∈{R,RW,RWW,RL,RLW,RLWW}, if M is a nondeterministic X-automaton that is correctness preserving, then there exists a deterministic X-automaton M1 such that the characteristic languages LC(M1) and LC(M) coincide. When a restarting automaton M executes a cycle that transforms a string from the language LC(M) into a string not belonging to LC(M), then this can be interpreted as an error of M. By counting the number of cycles it may take M to detect this error, we obtain a measure for the influence that errors have on computations. Accordingly, this measure is called error detection distance. It turns out, however, that an X-automaton with bounded error detection distance is equivalent to a correctness preserving X-automaton, and therewith to a deterministic X-automaton. This means that nondeterminism increases the expressive power of X-automata only in combination with an unbounded error detection distance

    The Tree Inclusion Problem: In Linear Space and Faster

    Full text link
    Given two rooted, ordered, and labeled trees PP and TT the tree inclusion problem is to determine if PP can be obtained from TT by deleting nodes in TT. This problem has recently been recognized as an important query primitive in XML databases. Kilpel\"ainen and Mannila [\emph{SIAM J. Comput. 1995}] presented the first polynomial time algorithm using quadratic time and space. Since then several improved results have been obtained for special cases when PP and TT have a small number of leaves or small depth. However, in the worst case these algorithms still use quadratic time and space. Let nSn_S, lSl_S, and dSd_S denote the number of nodes, the number of leaves, and the %maximum depth of a tree S∈{P,T}S \in \{P, T\}. In this paper we show that the tree inclusion problem can be solved in space O(nT)O(n_T) and time: O(\min(l_Pn_T, l_Pl_T\log \log n_T + n_T, \frac{n_Pn_T}{\log n_T} + n_{T}\log n_{T})). This improves or matches the best known time complexities while using only linear space instead of quadratic. This is particularly important in practical applications, such as XML databases, where the space is likely to be a bottleneck.Comment: Minor updates from last tim

    Index problems for game automata

    Full text link
    For a given regular language of infinite trees, one can ask about the minimal number of priorities needed to recognize this language with a non-deterministic, alternating, or weak alternating parity automaton. These questions are known as, respectively, the non-deterministic, alternating, and weak Rabin-Mostowski index problems. Whether they can be answered effectively is a long-standing open problem, solved so far only for languages recognizable by deterministic automata (the alternating variant trivializes). We investigate a wider class of regular languages, recognizable by so-called game automata, which can be seen as the closure of deterministic ones under complementation and composition. Game automata are known to recognize languages arbitrarily high in the alternating Rabin-Mostowski index hierarchy; that is, the alternating index problem does not trivialize any more. Our main contribution is that all three index problems are decidable for languages recognizable by game automata. Additionally, we show that it is decidable whether a given regular language can be recognized by a game automaton

    Evaluating Datalog via Tree Automata and Cycluits

    Full text link
    We investigate parameterizations of both database instances and queries that make query evaluation fixed-parameter tractable in combined complexity. We show that clique-frontier-guarded Datalog with stratified negation (CFG-Datalog) enjoys bilinear-time evaluation on structures of bounded treewidth for programs of bounded rule size. Such programs capture in particular conjunctive queries with simplicial decompositions of bounded width, guarded negation fragment queries of bounded CQ-rank, or two-way regular path queries. Our result is shown by translating to alternating two-way automata, whose semantics is defined via cyclic provenance circuits (cycluits) that can be tractably evaluated.Comment: 56 pages, 63 references. Journal version of "Combined Tractability of Query Evaluation via Tree Automata and Cycluits (Extended Version)" at arXiv:1612.04203. Up to the stylesheet, page/environment numbering, and possible minor publisher-induced changes, this is the exact content of the journal paper that will appear in Theory of Computing Systems. Update wrt version 1: latest reviewer feedbac

    Tree transducers, L systems, and two-way machines

    Get PDF
    A relationship between parallel rewriting systems and two-way machines is investigated. Restrictions on the “copying power” of these devices endow them with rich structuring and give insight into the issues of determinism, parallelism, and copying. Among the parallel rewriting systems considered are the top-down tree transducer; the generalized syntax-directed translation scheme and the ETOL system, and among the two-way machines are the tree-walking automaton, the two-way finite-state transducer, and (generalizations of) the one-way checking stack automaton. The. relationship of these devices to macro grammars is also considered. An effort is made .to provide a systematic survey of a number of existing results

    Algebra, coalgebra, and minimization in polynomial differential equations

    Full text link
    We consider reasoning and minimization in systems of polynomial ordinary differential equations (ode's). The ring of multivariate polynomials is employed as a syntax for denoting system behaviours. We endow this set with a transition system structure based on the concept of Lie-derivative, thus inducing a notion of L-bisimulation. We prove that two states (variables) are L-bisimilar if and only if they correspond to the same solution in the ode's system. We then characterize L-bisimilarity algebraically, in terms of certain ideals in the polynomial ring that are invariant under Lie-derivation. This characterization allows us to develop a complete algorithm, based on building an ascending chain of ideals, for computing the largest L-bisimulation containing all valid identities that are instances of a user-specified template. A specific largest L-bisimulation can be used to build a reduced system of ode's, equivalent to the original one, but minimal among all those obtainable by linear aggregation of the original equations. A computationally less demanding approximate reduction and linearization technique is also proposed.Comment: 27 pages, extended and revised version of FOSSACS 2017 pape

    Designing Trustworthy Autonomous Systems

    Get PDF
    The design of autonomous systems is challenging and ensuring their trustworthiness can have different meanings, such as i) ensuring consistency and completeness of the requirements by a correct elicitation and formalization process; ii) ensuring that requirements are correctly mapped to system implementations so that any system behaviors never violate its requirements; iii) maximizing the reuse of available components and subsystems in order to cope with the design complexity; and iv) ensuring correct coordination of the system with its environment.Several techniques have been proposed over the years to cope with specific problems. However, a holistic design framework that, leveraging on existing tools and methodologies, practically helps the analysis and design of autonomous systems is still missing. This thesis explores the problem of building trustworthy autonomous systems from different angles. We have analyzed how current approaches of formal verification can provide assurances: 1) to the requirement corpora itself by formalizing requirements with assume/guarantee contracts to detect incompleteness and conflicts; 2) to the reward function used to then train the system so that the requirements do not get misinterpreted; 3) to the execution of the system by run-time monitoring and enforcing certain invariants; 4) to the coordination of the system with other external entities in a system of system scenario and 5) to system behaviors by automatically synthesize a policy which is correct

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book
    • 

    corecore