1,194 research outputs found

    Evolving Graphical Planner: Contextual Global Planning for Vision-and-Language Navigation

    Full text link
    The ability to perform effective planning is crucial for building an instruction-following agent. When navigating through a new environment, an agent is challenged with (1) connecting the natural language instructions with its progressively growing knowledge of the world; and (2) performing long-range planning and decision making in the form of effective exploration and error correction. Current methods are still limited on both fronts despite extensive efforts. In this paper, we introduce the Evolving Graphical Planner (EGP), a model that performs global planning for navigation based on raw sensory input. The model dynamically constructs a graphical representation, generalizes the action space to allow for more flexible decision making, and performs efficient planning on a proxy graph representation. We evaluate our model on a challenging Vision-and-Language Navigation (VLN) task with photorealistic images and achieve superior performance compared to previous navigation architectures. For instance, we achieve a 53% success rate on the test split of the Room-to-Room navigation task through pure imitation learning, outperforming previous navigation architectures by up to 5%

    A3Graph : adversarial attributed autoencoder for graph representation learning

    Get PDF
    Recent years have witnessed a proliferation of graph representation techniques in social network analysis. Graph representation aims to map nodes in the graph into low-dimensional vector space while preserving as much information as possible. However, most existing methods ignore the robustness of learned latent vectors, which leads to inferior representation results due to sparse and noisy data in graphs. In this paper, we propose a novel framework, named A3Graph, which aims to improve the robustness and stability of graph representations. Specifically, we first construct an aggregation matrix by the combining positive point-wise mutual information matrix with the attribute matrix. Then, we enforce the autoencoder to reconstruct the aggregation matrix instead of the input attribute matrix. The enhancement autoencoder can incorporate structural and attributed information in a joint learning way to improve the noise-resilient during the learning process. Furthermore, an adversarial learning component is leveraged in our framework to impose a prior distribution on learned representations has been demonstrated as an effective mechanism in improving the robustness and stability in representation learning. Experimental studies on real-world datasets have demonstrated the effectiveness of the proposed A3Graph. © 2021 ACM

    Evolving Computation Graphs

    Full text link
    Graph neural networks (GNNs) have demonstrated success in modeling relational data, especially for data that exhibits homophily: when a connection between nodes tends to imply that they belong to the same class. However, while this assumption is true in many relevant situations, there are important real-world scenarios that violate this assumption, and this has spurred research into improving GNNs for these cases. In this work, we propose Evolving Computation Graphs (ECGs), a novel method for enhancing GNNs on heterophilic datasets. Our approach builds on prior theoretical insights linking node degree, high homophily, and inter vs intra-class embedding similarity by rewiring the GNNs' computation graph towards adding edges that connect nodes that are likely to be in the same class. We utilise weaker classifiers to identify these edges, ultimately improving GNN performance on non-homophilic data as a result. We evaluate ECGs on a diverse set of recently-proposed heterophilous datasets and demonstrate improvements over the relevant baselines. ECG presents a simple, intuitive and elegant approach for improving GNN performance on heterophilic datasets without requiring prior domain knowledge.Comment: To appear at ICML TAGML 2023; 18 pages, 2 figure

    Unified Topological Inference for Brain Networks in Temporal Lobe Epilepsy Using the Wasserstein Distance

    Full text link
    Persistent homology can extract hidden topological signals present in brain networks. Persistent homology summarizes the changes of topological structures over multiple different scales called filtrations. Doing so detect hidden topological signals that persist over multiple scales. However, a key obstacle of applying persistent homology to brain network studies has always been the lack of coherent statistical inference framework. To address this problem, we present a unified topological inference framework based on the Wasserstein distance. Our approach has no explicit models and distributional assumptions. The inference is performed in a completely data driven fashion. The method is applied to the resting-state functional magnetic resonance images (rs-fMRI) of the temporal lobe epilepsy patients collected at two different sites: University of Wisconsin-Madison and the Medical College of Wisconsin. However, the topological method is robust to variations due to sex and acquisition, and thus there is no need to account for sex and site as categorical nuisance covariates. We are able to localize brain regions that contribute the most to topological differences. We made MATLAB package available at https://github.com/laplcebeltrami/dynamicTDA that was used to perform all the analysis in this study

    Positional Encoding-based Resident Identification in Multi-resident Smart Homes

    Full text link
    We propose a novel resident identification framework to identify residents in a multi-occupant smart environment. The proposed framework employs a feature extraction model based on the concepts of positional encoding. The feature extraction model considers the locations of homes as a graph. We design a novel algorithm to build such graphs from layout maps of smart environments. The Node2Vec algorithm is used to transform the graph into high-dimensional node embeddings. A Long Short-Term Memory (LSTM) model is introduced to predict the identities of residents using temporal sequences of sensor events with the node embeddings. Extensive experiments show that our proposed scheme effectively identifies residents in a multi-occupant environment. Evaluation results on two real-world datasets demonstrate that our proposed approach achieves 94.5% and 87.9% accuracy, respectively.Comment: 27 pages, 11 figures, 2 table

    A critical look at the evaluation of GNNs under heterophily: Are we really making progress?

    Full text link
    Node classification is a classical graph machine learning task on which Graph Neural Networks (GNNs) have recently achieved strong results. However, it is often believed that standard GNNs only work well for homophilous graphs, i.e., graphs where edges tend to connect nodes of the same class. Graphs without this property are called heterophilous, and it is typically assumed that specialized methods are required to achieve strong performance on such graphs. In this work, we challenge this assumption. First, we show that the standard datasets used for evaluating heterophily-specific models have serious drawbacks, making results obtained by using them unreliable. The most significant of these drawbacks is the presence of a large number of duplicate nodes in the datasets Squirrel and Chameleon, which leads to train-test data leakage. We show that removing duplicate nodes strongly affects GNN performance on these datasets. Then, we propose a set of heterophilous graphs of varying properties that we believe can serve as a better benchmark for evaluating the performance of GNNs under heterophily. We show that standard GNNs achieve strong results on these heterophilous graphs, almost always outperforming specialized models. Our datasets and the code for reproducing our experiments are available at https://github.com/yandex-research/heterophilous-graph

    Machine Learning on Neutron and X-Ray Scattering

    Get PDF
    Neutron and X-ray scattering represent two state-of-the-art materials characterization techniques that measure materials' structural and dynamical properties with high precision. These techniques play critical roles in understanding a wide variety of materials systems, from catalysis to polymers, nanomaterials to macromolecules, and energy materials to quantum materials. In recent years, neutron and X-ray scattering have received a significant boost due to the development and increased application of machine learning to materials problems. This article reviews the recent progress in applying machine learning techniques to augment various neutron and X-ray scattering techniques. We highlight the integration of machine learning methods into the typical workflow of scattering experiments. We focus on scattering problems that faced challenge with traditional methods but addressable using machine learning, such as leveraging the knowledge of simple materials to model more complicated systems, learning with limited data or incomplete labels, identifying meaningful spectra and materials' representations for learning tasks, mitigating spectral noise, and many others. We present an outlook on a few emerging roles machine learning may play in broad types of scattering and spectroscopic problems in the foreseeable future.Comment: 56 pages, 12 figures. Feedback most welcom

    Trajectory-User Linking via Hierarchical Spatio-Temporal Attention Networks

    Full text link
    Trajectory-User Linking (TUL) is crucial for human mobility modeling by linking diferent trajectories to users with the exploration of complex mobility patterns. Existing works mainly rely on the recurrent neural framework to encode the temporal dependencies in trajectories, have fall short in capturing spatial-temporal global context for TUL prediction. To ill this gap, this work presents a new hierarchical spatio-temporal attention neural network, called AttnTUL, to jointly encode the local trajectory transitional patterns and global spatial dependencies for TUL. Speciically, our irst model component is built over the graph neural architecture to preserve the local and global context and enhance the representation paradigm of geographical regions and user trajectories. Additionally, a hierarchically structured attention network is designed to simultaneously encode the intra-trajectory and inter-trajectory dependencies, with the integration of the temporal attention mechanism and global elastic attentional encoder. Extensive experiments demonstrate the superiority of our AttnTUL method as compared to state-of-the-art baselines on various trajectory datasets. The source code of our model is available at https://github.com/Onedean/AttnTUL.Comment: 22 pages, 8 figures, accepted by ACM Trans. Knowl. Discov. Data Journal (TKDD
    corecore