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ABSTRACT

Recent years have witnessed a proliferation of graph represen-
tation techniques in social network analysis. Graph represen-
tation aims to map nodes in the graph into low-dimensional
vector space while preserving as much information as possi-
ble. However, most existing methods ignore the robustness of
learned latent vectors, which leads to inferior representation
results due to sparse and noisy data in graphs. In this paper,
we propose a novel framework, named A3Graph, which aims
to improve the robustness and stability of graph representa-
tions. Specifically, we first construct an aggregation matrix
by the combining positive point-wise mutual information
matrix with the attribute matrix. Then, we enforce the au-
toencoder to reconstruct the aggregation matrix instead of
the input attribute matrix. The enhancement autoencoder
can incorporate structural and attributed information in
a joint learning way to improve the noise-resilient during
the learning process. Furthermore, an adversarial learning
component is leveraged in our framework to impose a prior
distribution on learned representations has been demonstrat-
ed as an effective mechanism in improving the robustness
and stability in representation learning. Experimental studies
on real-world datasets have demonstrated the effectiveness
of the proposed A3Graph.

CCS CONCEPTS

∙ Networks → Network algorithms; ∙ Applied com-
puting → Bioinformatics.
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1 INTRODUCTION

Social networks are an important class of networks for social
computing, including a wide variety of media such as social
websites (e.g., Facebook, Twitter) and citation networks (e.g.,
CiteSeer, Cora). Lots of latent knowledge can be obtained
by analyzing social networks. For instance, by analyzing
citation graphs, we can make a lot of interesting discoveries
in research development such as the innovation flow [13],
change of interests [28] and relationships between mentors and
students [15]. However, the nonlinearity of graphs poses great
challenges in graph analysis tasks such as node classification,
node clustering, link prediction and graph visualization.

More recently, lots of approaches have been proposed
to learn graph representations that map a graph into low-
dimensional vector space while preserving original graph in-
formation such as structure information [22], node attribute
information [5], and node label information [12]. Previous
machine learning techniques always treat this problem as
a preprocessing step. Feature extraction requires a lot of
manual effort. In contrast, graph representation regards the
preprocessing step as a learning task by using a data-driven
approach to learn latent vectors that encode graph infor-
mation automatically. The learned results (low-dimensional
vectors) can be used as inputs for downstream graph analysis
tasks.

Inspired by techniques of natural language processing,
many graph representation methods have been proposed such
as DeepWalk [22], node2vec [9], LINE [25] and GraRep [4].
They aim to preserve graph structural information, namely,
pairwise proximity between nodes. Most methods adopt the
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random walk as sampling strategy to model graph structural
information. Experimental results on real-world datasets have
demonstrated their superiority in common graph learning
tasks.

Although existing methods have explored different ways to
preserve the structural information, three limitations should
be considered in designing a graph embedding framework.
The first is how to capture the higher-order proximity of
structural information in graph-structured data. DeepWalk
and LINE capture the local consistency while node2vec ex-
plores partial global consistency. However, in practice, the
global consistency relationship is indispensable. Users in so-
cial networks may be influenced by both local consistency
relationships (e.g., friends, families) and global consistency
relationships (e.g., community, nations). Thus, the global
consistency should be considered in the learning process. The
second limitation is how to combine topology information
with attribute information. The node attribute information
provides useful information than topological information in
some specific scenarios. For example, nodes with same labels
across networks tend to share similar attributes rather than
similar topological structures [24]. Finally, the learned vectors
may perform poorly in a noise environment. The robustness
of the learned latent vectors should not be neglected.

To address above mentioned limitations, we propose a
novel graph representation framework, termed as A3Graph.
It incorporates node topology and attributed information in a
joint learning way. Three major contributions are summarized
as follows:

∙ We propose a novel graph representation framework,
A3Graph, to learn robust node embeddings by consid-
ering topology and attribute information for a given
graph.

∙ We design a structure-attribute aggregation matrix as
the decoder objective to enforce autoencoder to learn
local and global consistency between nodes. Moreover,
a prior distribution is imposed to the learned latent
vector as a regularizer though adversarial learning.

∙ The proposed framework, A3Graph, is extensively eval-
uated on three real datasets through node classification
and node clustering tasks. Experiment results verify
the effectiveness of A3Graph.

This paper is organized as follows. In Section 2, we review the
related work including graph representation and generative
adversarial networks. In Section 3, A3Graph will be intro-
duced in detail. In Section 4, we elaborate on the experiment
part. Section 5 concludes our work.

2 RELATED WORK

2.1 Graph Representation

Recently, graph representation has captured amounts of at-
tentions [11]. These methods can be classified into three cat-
egorizes: random walk based methods, matrix factorization
based methods, and deep neural network based methods.

Random walks based methods are commonly used in graph
representation by exploring node structural information with

randomly sampled paths. Inspired by word2vec [18], Deep-
Walk [22] treats nodes as words and random paths as sen-
tences. It assumes that the vector of a node should be similar
to the co-occurrence nodes in the sampled random walk
paths [27]. Node2vec [9] extends a more flexible sample s-
trategy in generating walk paths that can explore diverse
structural neighboring nodes. LINE [25] preserves first-order
and second-order structural information in large-scale graphs
by incorporating alias table edge sampling in the random
walk process.

Unlike random walk-based methods that use the sampling
path as the input, the input of factorization based methods is
an adjacent matrix. Then, matrix factorization techniques are
used as feature learning extractors to obtain low-dimensional
vectors. LLE [23] and LE [3] are two earlier methods fac-
torizing a pre-processing matrix containing local structural
information. GraRep [4] devotes to preserving the high-order
global structural information by computing a 𝑘-step trans-
formation probability matrix and utilizes SVD [1] to learn
latent representations.

The goal of graph representation is to learn a mapping
function from the original graph space to the latent rep-
resentation space. Matrix factorization based methods ap-
proximate this mapping process linearly. Vast quantities of
information are lost in the linear matrix factorization proce-
dure due to nonlinearity of graphs. The deep neural network
is an effective technique to model this nonlinear mapping
process. SDNE [26] addresses graph representation by au-
toencoder network which can capture both the first-order and
second-order structural information. SEANO [14] designs a
representation framework with multi-layer perceptron (MLP)
to learn node structural, attribute, and label information
simultaneously. ANRL [29] proposes a neighbor enhancemen-
t autoencoder network with an attribute-aware skip-gram
component to learn the structural and attribute information.

2.2 Generative Adversarial Networks

Generative Adversarial Networks [8] (GAN), inspired by Nash
equilibrium [19], as a generative deep neural network model,
consists of a discriminator and a generator. The discriminator
aims at distinguishing the fake data from real data and the
generator tries to generate data to fool the discriminator.
This process can be seen as a minimax adversarial game.

Rich works such as GAN [8], Adversarial Autoencoder [17],
DCGAN [7], WGAN [2] have proved that the adversarial
learning mechanism is effective in obtaining stable states and
reliable representations in image generation. Furthermore,
several works like AIDW [6], and ARGA [21] have been pro-
posed to learn more robust and stable graph representations.

Most GAN methods are designed for generating image
data rather than graph data incapable of learning represen-
tations for graph-sturctured data. AIDW only considers the
structural information. For ARGA, the robustness of learned
representations is only guaranteed by the adversarial learning.

In this paper, different with previous method, we design a
jointly learning framework to learn robust latent embeddings
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Figure 1: The framework of A3Graph.

by considering the local and global topology and attribute
information with adversarial mechanism for graph-structured
data. Compared with graph learning methods in related work-
s, our A3Graph incorporates both structural and attributed
information in a joint learning way. Besides, we combine
structure-attribute aggregation reconstruction autoencoder
with adversarial learning module to learn robust and stable
graph representations simultaneously.

3 ADVERSARIAL ATTRIBUTED
AUTOENCODER
REPRESENTATION

3.1 Notations and Problem Definition

Definition 1. An attributed graph is defined as 𝒢 =
(𝒱, ℰ ,X) where 𝒱 represents the node set and ℰ represents the
edge set in a graph. X ∈ R𝑛×𝑚 is a node attributed matrix
where 𝑛 represents node number and 𝑚 represents dimension
of the attributed information. 𝑥𝑖 is the attributed information
vector of node 𝑖.

Definition 2. A Positive Pointwise Mutual Information
(PPMI) matrix [4] of a given graph can be defined as:

𝑃𝑖𝑗 = max{log( 𝑀𝑖,𝑗∑︀
𝑘 𝑀𝑘,𝑗

)− log(𝜂), 0} (1)

where 𝑀 = 𝐴 + 𝐴2 + ... + 𝐴𝑡. 𝐴𝑡 is the 𝑡-step probability
transformation matrix, denoting the probability for a transi-
tion between two nodes in 𝑡 steps. 𝐴 = 𝐷−1𝑆 where 𝐷 is the
diagonal matrix for a given graph with the adjacent matrix

𝑆. 𝜂 is set to
1

𝑛
in this paper.

Definition 3. Given a graph 𝒢 = (𝒱, ℰ ,X), for each node
𝑖 ∈ 𝒱, we aim to learn a mapping function 𝑓 : 𝑣𝑖 ↦→ zi ∈ R𝑑

where 𝑑 ≪ |𝒱|. The mapping function 𝑓 devotes to capturing
node structural information as well as attributed information.

3.2 An Overview of the Framework

In order to learn topology and attribute information for a
given graph in a regularized way, we propose an adversarial
attributed autoencoder for graph representation learning
(A3Graph). The framework, as shown in Figure 1, mainly
consists of the following two module:

∙ Aggregation matrix enhance autoencoder. In order to
learn topology and attribute information of each node,
we employ autoencoder as the basic feature extractor.
The decoder objective is replaced with an aggregation
matrix to enforce the autoencoder to learn topology
and attribute information by considering the local and
global consistency simultaneously.

∙ Adversarial learning module. We design an adversarial
learning module to enforce learned vectors to match
a prior distribution. The discriminator discriminates
whether the latent embedding vectors comes from the
encoder or from the predefined distribution.

3.3 Aggregation matrix Enhancement
Autoencoder Module

In order to capture graph local and global structural infor-
mation incorporating with attributed information, we design
a PPMI matrix based reconstruction autoencoder as the
main part of A3Graph framework. The encoder part is sim-
ilar to the conventional autoencoder which encodes node
attributes to a low-dimensional latent space. However, the
decoder part maps the encoder representations to aggrega-
tion matrix values. More specifically, for a given node 𝑣𝑖 with
attribute information 𝑥𝑖 ∈ R1×𝑚, the encoder part learns
the embedding of 𝑣𝑖 as:

𝑧
(𝑘)
𝑖 = 𝜎(𝑊 (𝑘)𝑧

(𝑘−1)
𝑖 + 𝑏(𝑘)), 𝑘 = 1, 2, ...,𝐾 (2)
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where 𝐾 represents the number of layers for encoder part.

𝑧
(𝑘−1)
𝑖 is the output of previous layer, 𝑧0𝑖 = 𝑥𝑖. 𝑧

𝐾
𝑖 is the

encoded representation of 𝑣𝑖 and the 𝜎(·) is the activation non-

linear function. 𝑊 (𝑘) and 𝑏(𝑘) are the linear transformation
weight matrices and bias vectors in 𝑘-th layer, respective-
ly. The decoder part is symmetrical to encoder part which
aims to reconstruct the high-dimensional output from the
low-dimensional embedding 𝑧𝐾𝑖 . In this paper, we construc-
t a matrix 𝑅 ∈ R𝑛×𝑚 which is the normalized product of
PPMI matrix 𝑀𝑝𝑝𝑚𝑖 ∈ R𝑛×𝑛 and attributed information
matrix X ∈ R𝑛×𝑚. The 𝑖-th row in the matrix represents
the aggregated result of structural information and attribute
information for a given node 𝑣𝑖 as:

𝑅(𝑖) =
1

𝑛

𝑛∑︁
𝑘=1

𝑃𝑖𝑘𝑥𝑘𝑖

𝑘 = 1, 2, ..., 𝑛

(3)

where 𝑃𝑖𝑘 represents the global consistency between 𝑣𝑖 and 𝑣𝑘.
𝑅(𝑖) combines global information with attribute information
of node 𝑣𝑖. We replace 𝑥𝑖 with this aggregated form to enforce
the autoencoder to learn more information of node. Therefore,
the autoencoder devotes to minimizing the reconstruction
loss as follows:

ℒ𝐴𝐸 =

𝑛∑︁
𝑖=1

||𝑥𝑖 −𝑅(𝑖)||22 (4)

where �̂�𝑖 is the decoder output.

3.4 Adversarial Learning Module

The adversarial learning module is designed to learn regular-
ized representations. It imposes a prior distribution to the
output of encoder part. This process can be regarded as a
regularization to graph representation learning. Adversarial
learning module consists of a generator and a discrimina-
tor. The generator is the encoder part in A3Graph and the
discriminator is implemented by a multi-layer perceptron
(MLP) which tells encoder output latent vector from a prior
distribution. In this paper, we use 𝑝 to represent the real
data distribution and 𝑞 to represent the generated (fake)
distribution. Therefore, 𝑝(𝑧) represents an arbitrary prior dis-
tribution, 𝑞(𝑧|𝑥) represents encoding distribution and 𝑝𝑑𝑎𝑡𝑎
represents input data distribution. In the proposed framework,
the adversarial autoencoder defines an posterior distribution
of 𝑞(𝑧) on learned vectors of autoencoder as follows:

𝑞(𝑧) =

𝑛∑︁
1

𝑞(𝑧𝑖|𝑥𝑖)𝑝𝑑𝑎𝑡𝑎(𝑥𝑖). (5)

The adversarial learning module aims to guide the encoder
posterior distribution 𝑞(𝑧) to match 𝑝(𝑧). In other words,
the autoencoder is regularized by the adversarial procedure.
Cross-entropy is used to measure the distance between the
𝑝(𝑧) and 𝑞(𝑧). Therefore, the loss function of adversarial
learning part is defined as:

ℒ𝐴𝐷 = −1

2
E𝑧∼𝑝(𝑧) log𝒟(𝑍)− 1

2
E𝑧∼𝑞(𝑧) log(1−𝒟(𝒢(𝑍)))

(6)

where 𝒟(·) and 𝒢(·) indicate the discriminator and generator.

3.5 Algorithm of A3Graph

In this section, we will first elaborate on the final objective
function of A3Graph. Then, a detailed algorithm of A3Graph
is presented.

Algorithm 1 Adversarial Attributed Autoencoder for Graph
Representation

Require: graph 𝒢 = (𝒱, ℰ ,X), representation size 𝑑, hyper
parameters 𝛼, 𝛽, 𝜆, outer iterations 𝑇 , discriminator
iterations 𝐷

Ensure: : node representations 𝑍 ∈ R𝑛×𝑑

1: Construct PPMI matrix based on Equation(1)
2: Construct reconstruction objective of decoder for each

node based on Equation(3)
3: for t = 1,2,...,T do
4: Sample ℎ elements {𝑥(1), 𝑥(2), ..., 𝑥(ℎ)} from X
5: Generate latent ℎ representations {𝑧(1), 𝑧(2), ..., 𝑧(ℎ)}

based on Equation(2).
6: Generate ℎ random liner interpolation coefficients

{𝜖(1), 𝜖(2), ..., 𝜖(ℎ)}
7: for k=1,2,...,D do

8: Sample ℎ entities{𝑧
′
(1), 𝑧

′
(2), ..., 𝑧

′
(ℎ)} from prior dis-

tribution 𝑝𝑧
9: Compute 𝑧 based on Equation(8)

10: Compute the gradient of ∇ℒ𝐴𝐷 and ∇ℒ𝐺𝑃 based
on Equation(7)

11: Update adversarial learning module parameters
12: end for
13: Compute the gradient of ∇ℒ𝐴𝐸 and ∇ℒ𝑅𝐸𝐺 based

on Equation(7)
14: Update autoencoder module parameters
15: end forreturn node representatios 𝑍

For autoencoder part, to avoid overfitting, we add the ℓ2
norm to autoencoder loss function. For adversarial learning
part, to improve the stability in training GAN and avoid
the mode collapse, we add a gradient penalty to adversarial
learning loss function as [10], namely, 𝐿𝐺𝑃 . The final loss
function of A3Graph is defined as:

ℒ = 𝛼ℒ𝐴𝐸 + 𝛽ℒ𝑅𝐸𝐺 + ℒ𝐴𝐷 + 𝜆𝐿𝐺𝑃

= 𝛼

𝑛∑︁
𝑖=1

||𝑥𝑖 −𝑅(𝑖)||22 +
𝛽

2

𝐾∑︁
1

(||𝑊 (𝑘)||2𝐹 + ||�̂� (𝑘)||2𝐹 )

+ (−1

2
E𝑧∼𝑝(𝑧) log𝒟(𝑍)− 1

2
E𝑧∼𝑞(𝑧) log(1−𝒟(𝒢(𝑍))))

+ E𝑧∼𝑝(𝑧)[(||∇𝑧𝒟||2 − 1)2]

(7)

where 𝛼 is the hyper parameter to balance the loss of au-
toencoder module and adversarial module. 𝛽 is the hyper

parameter of ℓ2 norm. 𝑊 (𝑘) and �̂� (𝑘) are weight matrices
of the encoder and decoder. 𝑧 is the data calculated by lin-
ear interpolation between the prior distribution and encoder
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distribution defined as:

𝑧 = 𝜖E𝑧∼𝑝(𝑧)𝑧 + (1− 𝜖)E𝑧∼𝑞(𝑧)𝑧, 𝜖 ∈ (0, 1) (8)

where the 𝑝(𝑧) represents the distribution between 𝑝(𝑧) and
𝑞(𝑧) in straight line direction.

4 EXPERIMENTS AND DISCUSSION

4.1 Datasets

The statistics of three datasets are presented in Table 1, where
𝒱, ℰ , X correspond to node set, edge set, and attributes set
as defined previously and 𝒞 denotes the label set. CiteSeer,
Cora and Pubmed are three commonly used paper-citation
graphs in several graph representation works [6, 9, 22]. The
edges represent citation relationships between papers (cite or
be cited). In this work, we regard these graphs as undirected
graphs.

Table 1: Statistics of the datasets used in A3Graph.

Datasets |𝒱| |ℰ| |X| |𝒞|

CiteSeer 3312 4715 3703 6
Cora 2708 5429 1443 7
Pubmed 19717 44338 500 3

4.2 Baseline Methods

In this subsection, we will make a brief introduction about
baseline methods as follows:

∙ DeepWalk [22]: Deepwalk is the first method that uti-
lizes random walk to sample node sequences in graph
and incorporates NLP method to construct graph rep-
resentations.

∙ LINE [25]: LINE combines the first-order and second-
order structural information into output representa-
tions through node co-occurrence and node conditional
probability.

∙ AIDW [6]: AIDW is an adversarial graph representation
method incorporating random walk based methods to
preserve structural information and adversarial learn-
ing to obtain robust and stable representation results.

∙ ARGA [21]: ARGA is an adversarial graph representa-
tion method. It leverages graph convolutional encoder
to incorporate node structural and attributed informa-
tion. Furthermore, an adversarial component is taken
as a regularization for representation output.

∙ SEANO [14]: SEANO is a semi-supervised graph rep-
resentation method. It designs a novel deep neural
network framework to preserve the node structural and
attributed and label information in a joint learning
way.

∙ ANRL [29]: To learn a robust and stable representation,
different with adversarial learning based methods, AN-
RL designs a neighbor nodes enhancement autoencoder
framework with Skip-gram to combine structural and
attributed information of graph.

4.3 Evaluation Metrics and Parameter
Settings

For node classification task, we choose Accuracy as evalu-
ation metric which are commonly used in lots of related
works [22] [14] [29]. For node clustering task, we choose ACC
(Accuracy), NMI (Normalized Mutual Information) and ARI
(Average Rand Index) as evaluation metrics following by [6].

For CiteSeer, we set our framework hidden layer neurons
of encoder to 1000 and 500, 𝛼 to 1, 𝛽 to 10. For Cora, we set
our framework hidden layer neurons of encoder to 500, 𝛼 to
1, 𝛽 to 0.1. For Pubmed, we set our framework hidden layer
neurons of encoder to 200, 𝛼 to 50, 𝛽 to 0.01. All learning
rates in A3Graph are set to 0.0001 and the representation
size is 128. The PPMI matrix is obtained by setting the order
as 4 for CiteSeer, Cora, and Pubmed. We choose the Uniform
distribution as real latent distribution in adversarial learning.
For all baseline methods, we perform the implementation
released by the original authors.

4.4 Node Classification

For node classification task, after obtaining representation
results, we randomly sample 10% to 90% labeled nodes to
train a support vector classifier [20] and use the rest data
to test. By repeating this process 10 times, we report the
average result of Accuracy. The detailed results are illustrated
in Figure 2 and we have the following observations:

∙ A3Graph has achieved ideal performance results on
three real-world datasets especially when the training
ratio is lower than 30%. The structural-only informa-
tion preserving methods perform worse than the struc-
tural and attributed information preserving methods
except in the Pubmed and Cora (training ratio < 40%).
One reason may be that compared with CiteSeer, Cora
and Pubmed have less attributed information and more
structural information as shown in Table 1.

∙ A3Graph and ANRL perform better than the other
methods in all three datasets. It demonstrates that
the attributed enhancement based decoder criterion
is crucial to guide neural network to learn robust and
stale representations.

∙ It worth noting that, two adversarial learning methods
ARGA and AIDW can not achieve ideal results in all
three datasets. ARGA performs better than AIDW,
showing that the structural and attributed informa-
tion preserving is more effective than structure-only
information preserving.

4.5 Node Clustering

For node clustering task, we perform the K-means clustering
algorithm on learned representations 10 times and calculate
the average value of ACC, NMI, and ARI. The detailed
results are shown in Table 2. We can obtain the following
observations:

∙ A general observation we can draw from the result
is that the proposed graph representation framework,
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Figure 2: Node classification results of A3Graph on CiteSeer, Cora and Pubmed.

(a) DeepWalk (b) LINE (c) ANRL (d) A3Graph

Figure 3: Visualization results on CiteSeer dataset.

Table 2: Node clustering results of A3Graph on Cora
and CiteSeer.

Datasets CiteSeer Cora

Evaluation Met-
rics

ACC NMI ADJ ACC NMI ADJ

DeepWalk 0.382 0.136 0.141 0.496 0.367 0.232

LINE 0.298 0.117 0.045 0.461 0.309 0.209

AIDW 0.281 0.083 0.026 0.323 0.171 0.052

ARGA 0.524 0.293 0.248 0.638 0.457 0.384

ANRL 0.519 0.326 0.249 0.508 0.388 0.277

A3Graph 0.676 0.419 0.423 0.649 0.485 0.400

A3Graph, has achieved the best performance on all
datasets.

∙ Structural and attributed information preserving meth-
ods perform better than structure-only preserving meth-
ods. Both structural and attributed information should
be incorporated in representation learning.

∙ Compared with node classification task, ARGA has
made obvious improvement in the node clustering task.
It demonstrates that the adversarial learning compo-
nent affects the performance due to its adversarial pro-
cedure for improving the robustness of representation
results.

∙ In node clustering task, ANRL performs better on Cite-
Seer than Cora. As previously mentioned, the struc-
tural information and attributed information are both
crucial in graph representation. Even though ANRL

incorporates a Skip-Gram component to preserve struc-
tural information, the neighbor attributed information
enhancement mechanism plays a vital role in repre-
sentation learning. However, only first-order structural
attributed information preserving can not achieve the
best representations in the clustering task.

4.6 Graph Visualization

In graph representation, a promising algorithm should p-
reserve the original graph topology information well in a
low-dimensional space. To prove the ability of A3Graph more
intuitively, t-SNE [16] is utilized to visualize the represented
latent vectors in a two-dimensional space. Figure 3 shows the
visualization results on the CiteSeer dataset. It can be con-
cluded that the A3Graph achieves impressive performance in
preserving the topology information even though it learns the
representations in an unsupervised manner. Meanwhile, com-
pared with the results learned by ANRL, the visualization of
A3Graph is more discriminative with a smaller distance of
within-class and larger distance of inter-class.

4.7 Ablation Test

The proposed framework, A3Graph, contains two key mod-
ules: the first is the aggregated matrix and the second is the
regularized adversarial learning module. In this subsection,
we perform the ablation test to demonstrate the effectiveness
of each module. The following A3Graph variants are designed
for comparison.
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Figure 4: Ablation test result of A3Graph.

∙ A3Graph-SR: A variant of A3Graph with self-reconstruction
in the autoencoder, the high-order PPMI matrix is re-
moved.

∙ A3Graph-AR: A variant of A3Graph with the adver-
sarial learning module being removed.

We perform the ablation test with node classification task on
Cora. The training ratio is set to 30%. The result is shown
in Figure 4. We can conclude that the A3Graph performs
better than A3Graph-SR which confirms the superiority of
the aggregated matrix module. Moreover, the performance
of A3Graph and A3Graph-AR shows the effectiveness of
adversarial learning module in A3Graph.

4.8 Parameter Sensitivity

In this subsection, we evaluate the affection of hyperparame-
ters to the performance of the proposed framework. Specially,
we investigate how the representation dimension size 𝑑, hy-
perparameters 𝛼 and 𝛽 affect node classification performance
on CiteSeer with training ratio as 30%. Furthermore, we also
evaluate node clustering performance with different prior
distributions in adversarial learning components. It worth
noting that all the other settings are set to default values
besides the being tested parameter.

As shown in Figure 5, we investigate 𝑑, 𝛼 and 𝛽 from 8 to
128, 0.1 to 20 and 0.1 to 30, respectively. We can observe that
for all three parameters, the accuracy of node classification
shows a sharp increasing at first. Then, for 𝑑 , there is an
decreasing when it reaches around 128. For 𝛼 there is slightly
decreasing when it reaches to 1 and then becomes stable.
However, for 𝛽, a drastic decreasing trend can be observed
when it reaches to 10.

For prior distribution, we perform the node clustering task
on CiteSeer and Cora. By replacing the prior distribution
with Gaussian distribution, we find a similar performance in
node clustering results (ACC:0.667, NMI:0.414, ADJ:0.419).
It demonstrates both Uniform and Gaussian distributions
can improve the robustness and stability of learned represen-
tations.

4.9 Extensive Discussion

In subsections 4.4-4.7, we report the experimental results of
A3Graph in node classification, node clustering, and graph
visualization. In this subsection, we aim to provide a more
detailed discussion about the proposed framework.

First, A3Graph is an unsupervised graph learning frame-
work by considering topology and structural information into
a joint learning pipeline. The autoencoder is the basic feature
extractor to learn effective features. The PPMI matrix, as the
core part of A3Graph, has been extensively investigated in
terms of natural language processing (NLP) to perform well
on scenarios of calculating semantic similarity. In A3Graph,
PPMI matrix is utilized to build the global consistency of a
graph by measuring the co-occurrence between two nodes in
a 𝑘-order context. Combined with the attribute information,
the encode-decode structure will enforce the latent vectors to
learn information in the aggregated matrix. ARGA adopts
GCN as the basic feature extractor which only considers the
local consistency in learning structural information. More-
over, GCN, as a representative graph embedding framework,
is semi-supervised and incapable of supporting mini-batch
training.

Second, the adversarial mechanism utilized in A3Graph
can be seen as the regulation of the learned latent vectors.
Most graph embedding methods learn the latent vectors with-
out any regulations which leads to a free latent vector space
for any structure [17]. In this work, we utilize the adversarial
mechanism to make the learned embeddings match a prede-
fined distribution results in regularized learned results for
embeddings. It is the reason why A3Graph can bate SEANO
and ANRL in the node classification task. These two baseline
frameworks learn local and global topology information in
an unregularized way which leads to a degenerate identity
mapping.

Last, two reasons enable the robustness of A3Graph. The
first is that we aggregate proximity information of a given
node rather than itself. Assume that a node is an outlier that
differs largely from its proximity nodes, this strategy will
decrease the noise effects from this outlier node in learning
the representation [29]. Second is the regularization strategy
(adversarial learning module) which has been demonstrated
in lots of works in eliminating the effects in a noise environ-
ment [17] [6] [21].

5 CONCLUSION

In this work, for graph representing, we propose a novel graph
representation framework, A3Graph, to incorporate local and
global structural information as well as attributed informa-
tion in a joint learning way. We argue that most existing
graph representation methods can not learn robust and stable
results due to disinformation or misinformation in graphs. In
A3Graph, we take PPMI matrix based attributed informa-
tion aggregation as the objective of decoder reconstruction.
Furthermore, we design an adversarial learning component
to enforce the latent representations to be in accordance
with a prior distribution. By adding these two regularization
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Figure 5: Parameter sensitivity results using node classification task on CiteSeer with train ratio as 30%

mechanisms, the learned vectors can be more robust and
stable. Experimental results validate the effectiveness of the
proposed framework.
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