3 research outputs found

    Network dimensioning and base station on/off switching strategies for sustainable deployments in remote areas

    Get PDF
    This paper provides a methodology for the dimensioning of the access network in remote rural areas, considering the progressive introduction of cellular services in these regions. A 3G small cell (SC) network with one or several carriers deployed at the SC, fed with solar panels and connected to a backhaul with limited capacity is considered for the analysis. Because the backhaul may be inexistent or very expensive (e.g., satellite-based backhaul) the network design pursues the minimization of the required backhaul bandwidth. The required backhaul bandwidth and the required energy units (i.e., the size of the solar panels and the required number of batteries) are then obtained as an output of the dimensioning analysis. Both the backhaul minimization objective and the constraints associated with each of the carriers (low maximum radiated power and low number of users connected simultaneously) require a novel methodology compared to the classical dimensioning techniques. We also develop a procedure for switching on/off carriers in order to minimize the energy consumption without affecting the quality of service (QoS) perceived by the users. This technique allows reducing the required size of the energy units, which directly translates into a cost reduction. In the development of this on/off switching strategy, we first assume perfect knowledge of the traffic profile and later, we develop a robust Bayesian approach to account for possible error modeling in the traffic profile information.Peer ReviewedPostprint (published version

    Resource allocation in cellular CDMA systems with cross- layer Optimization

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies
    corecore