21 research outputs found

    Thoracic wall reconstruction using ultrasound images to model/bend the thoracic prosthesis for correction of pectus excavatum

    Get PDF
    Pectus excavatum is the most common congenital deformity of the anterior thoracic wall. The surgical correction of such deformity, using Nuss procedure, consists in the placement of a personalized convex prosthesis into sub-sternal position to correct the deformity. The aim of this work is the CT-scan substitution by ultrasound imaging for the pre-operative diagnosis and pre-modeling of the prosthesis, in order to avoid patient radiation exposure. To accomplish this, ultrasound images are acquired along an axial plane, followed by a rigid registration method to obtain the spatial transformation between subsequent images. These images are overlapped to reconstruct an axial plane equivalent to a CT-slice. A phantom was used to conduct preliminary experiments and the achieved results were compared with the corresponding CT-data, showing that the proposed methodology can be capable to create a valid approximation of the anterior thoracic wall, which can be used to model/bend the prosthesis.Fundação para a Ciencia e Tecnologia (FCT

    The Influence of Sonographer Experience on Skeletal Muscle Image Acquisition and Analysis

    Get PDF
    The amount of experience with ultrasonography may influence measurement outcomes while images are acquired or analyzed. The purpose of this study was to identify the interrater reliability of ultrasound image acquisition and image analysis between experienced and novice sonographers and image analysts, respectively. Following a brief hands-on training session (2 h), the experienced and novice sonographers and analysts independently performed image acquisition and analyses on the biceps brachii, vastus lateralis, and medial gastrocnemius in a sample of healthy participants (n = 17). Test–retest reliability statistics were computed for muscle thickness (transverse and sagittal planes), muscle cross-sectional area, echo intensity and subcutaneous adipose tissue thickness. The results show that image analysis experience generally has a greater impact on measurement outcomes than image acquisition experience. Interrater reliability for measurements of muscle size during image acquisition was generally good–excellent (ICC2,1: 0.82–0.98), but poor–moderate for echo intensity (ICC2,1: 0.43–0.77). For image analyses, interrater reliability for measurements of muscle size for the vastus lateralis and biceps brachii was poor–moderate (ICC2,1: 0.48–0.70), but excellent for echo intensity (ICC2,1: 0.90–0.98). Our findings have important implications for laboratories and clinics where members possess varying levels of ultrasound experience

    Oprogramowanie do rekonstrukcji i analizy 3D obrazów diagnostycznych

    Get PDF
    Background: Recent advances in computer technologies have opened new frontiers in medical diagnostics. Interesting possibilities are the use of three-dimensional (3D) imaging and the combination of images from different modalities. Software prepared in our laboratories devoted to 3D image reconstruction and analysis from computed tomography and ultrasonography is presented. In developing our software it was assumed that it should be applicable in standard medical practice, i.e. it should work effectively with a PC. An additional feature is the possibility of combining 3D images from different modalities. Materials/Methods: The program was tested on a PC using DICOM data from computed tomography and TIFF files obtained from a 3D ultrasound system. The results of the anthropomorphic phantom and patient data were taken into consideration. A new approach was used to achieve spatial correlation of two independently obtained 3D images. The method relies on the use of four pairs of markers within the regions under consideration. The user selects the markers manually and the computer calculates the transformations necessary for coupling the images. Results: The main software feature is the possibility of 3D image reconstruction from a series of twodimensional (2D) images. The reconstructed 3D image can be: (1) viewed with the most popular methods of 3D image viewing, (2) filtered and processed to improve image quality, (3) analyzed quantitatively (geometrical measurements), and (4) coupled with another, independently acquired 3D image. The reconstructed and processed 3D image can be stored at every stage of image processing. The overall software performance was good considering the relatively low costs of the hardware used and the huge data sets processed. The program can be freely used and tested (source code and program available at http://www.biofizyka.cm-uj.krakow.pl). Improvements allowing the processing of new data types and new procedures can be implemented for specific demands. Conclusions: The reconstruction and data processing can be conducted using a standard PC, so low investment costs result in the introduction of advanced and useful diagnostic possibilities

    Development and Phantom Validation of a 3D-Ultrasound-Guided System for Targeting MRI-visible Lesions during Transrectal Prostate Biopsy

    Get PDF
    OBJECTIVE: Three- and four-dimensional transrectal ultrasound transducers are now available from most major ultrasound equipment manufacturers, but currently are incorporated into only one commercial prostate biopsy guidance system. Such transducers offer the benefits of rapid volumetric imaging, but can cause substantial measurement distortion in electromagnetic tracking sensors, which are commonly used to enable 3D navigation. In this paper, we describe the design, development and validation of a 3D-ultrasound-guided transrectal prostate biopsy system that employs high-accuracy optical tracking to localize the ultrasound probe and prostate targets in 3D physical space. METHODS: The accuracy of the system was validated by evaluating the targeted needle placement error after inserting a biopsy needle to sample planned targets in a phantom using standard 2D ultrasound guidance versus real-time 3D guidance provided by the new system. RESULTS: The overall mean needle-segment-to-target distance error was 3.6±4.0 mm and mean needle-to-target distance was 3.2±2.4 mm. CONCLUSION: a significant increase in needle placement accuracy was observed when using the 3D guidance system compared with visual targeting of invisible (virtual) lesions using a standard B-mode ultrasound guided biopsy technique

    Deformation correction in ultrasound imaging in an elastography framework

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 77-80).Tissue deformation in ultrasound imaging is an inevitable phenomenon and poses challenges to the development of many techniques related to ultrasound image registration, including multimodal image fusion, freehand three-dimensional ultrasound, and quantitative measurement of tissue geometry. In this thesis, a novel trajectory-based method to correct tissue deformation in ultrasound B-mode imaging and elastography is developed in the framework of elastography. To characterize the change of tissue deformation with contact force, a force sensor is used to provide contact force measurement. Correlation-based displacement estimation techniques are applied to ultrasound images acquired under different contact forces. Based on the estimation results, a two-dimensional trajectory field is constructed, where pixel coordinates in each scan are plotted against the corresponding contact force. Interpolation or extrapolation by polynomial curve fitting is then applied to each trajectory to estimate the image under a specified contact force. The performance of displacement estimation and polynomial curve fitting are analyzed in a simulation framework incorporating FEM and ultrasound simulation. Influences of parameter selection are also examined. It is found that in displacement estimation, the coarse-to-fine approach outperforms single-level template search, and correlation filtering in coarse scale provides noticeable improvement in estimation performance. The strategies of image acquisition and order selection in polynomial curve fitting are also evaluated. Additionally, a finer force resolution is found to give better performance in predicting pixel positions under zero force. Deformation correction in both B-mode imaging and elastography is demonstrated through simulation and in-vitro experiments. The performance of correction is quantified by translational offset and area estimation of the tissue inclusions. It is found that, for both B-mode and elastography images, those performance metrics are significantly improved after correction. Moreover, it is shown that a finer resolution in force control gives better performance in deformation correction, which agrees with the analysis of polynomial curve fitting.by Shih-Yu Sun.S.M

    REAL-TIME 4D ULTRASOUND RECONSTRUCTION FOR IMAGE-GUIDED INTRACARDIAC INTERVENTIONS

    Get PDF
    Image-guided therapy addresses the lack of direct vision associated with minimally- invasive interventions performed on the beating heart, but requires effective intraoperative imaging. Gated 4D ultrasound reconstruction using a tracked 2D probe generates a time-series of 3D images representing the beating heart over the cardiac cycle. These images have a relatively high spatial resolution and wide field of view, and ultrasound is easily integrated into the intraoperative environment. This thesis presents a real-time 4D ultrasound reconstruction system incorporated within an augmented reality environment for surgical guidance, whose incremental visualization reduces common acquisition errors. The resulting 4D ultrasound datasets are intended for visualization or registration to preoperative images. A human factors experiment demonstrates the advantages of real-time ultrasound reconstruction, and accuracy assessments performed both with a dynamic phantom and intraoperatively reveal RMS localization errors of 2.5-2.7 mm, and 0.8 mm, respectively. Finally, clinical applicability is demonstrated by both porcine and patient imaging
    corecore