62 research outputs found

    MIMO-aided near-capacity turbo transceivers: taxonomy and performance versus complexity

    No full text
    In this treatise, we firstly review the associated Multiple-Input Multiple-Output (MIMO) system theory and review the family of hard-decision and soft-decision based detection algorithms in the context of Spatial Division Multiplexing (SDM) systems. Our discussions culminate in the introduction of a range of powerful novel MIMO detectors, such as for example Markov Chain assisted Minimum Bit-Error Rate (MC-MBER) detectors, which are capable of reliably operating in the challenging high-importance rank-deficient scenarios, where there are more transmitters than receivers and hence the resultant channel-matrix becomes non-invertible. As a result, conventional detectors would exhibit a high residual error floor. We then invoke the Soft-Input Soft-Output (SISO) MIMO detectors for creating turbo-detected two- or three-stage concatenated SDM schemes and investigate their attainable performance in the light of their computational complexity. Finally, we introduce the powerful design tools of EXtrinsic Information Transfer (EXIT)-charts and characterize the achievable performance of the diverse near- capacity SISO detectors with the aid of EXIT charts

    Turbo Decoding and Detection for Wireless Applications

    Get PDF
    A historical perspective of turbo coding and turbo transceivers inspired by the generic turbo principles is provided, as it evolved from Shannon’s visionary predictions. More specifically, we commence by discussing the turbo principles, which have been shown to be capable of performing close to Shannon’s capacity limit. We continue by reviewing the classic maximum a posteriori probability decoder. These discussions are followed by studying the effect of a range of system parameters in a systematic fashion, in order to gauge their performance ramifications. In the second part of this treatise, we focus our attention on the family of iterative receivers designed for wireless communication systems, which were partly inspired by the invention of turbo codes. More specifically, the family of iteratively detected joint coding and modulation schemes, turbo equalization, concatenated spacetime and channel coding arrangements, as well as multi-user detection and three-stage multimedia systems are highlighted

    Optimisation of Iterative Multi-user Receivers using Analytical Tools

    No full text
    The objective of this thesis is to develop tools for the analysis and optimization of an iterative receiver. These tools can be applied to most soft-in soft-out (SISO) receiver components. For illustration purposes we consider a multi-user DS-CDMA system with forward error correction that employs iterative multi-user detection based on soft interference cancellation and single user decoding. Optimized power levels combined with adaptive scheduling allows for efficient utilization of receiver resources for heavily loaded systems.¶ Metric transfer analysis has been shown to be an accurate method of predicting the convergence behavior of iterative receivers. EXtrinsic Information (EXIT), fidelity (FT) and variance (VT) transfer analysis are well-known methods, however the relationship between the different approaches has not been explored in detail. We compare the metrics numerically and analytically and derive functions to closely approximate the relationship between them. The result allows for easy translation between EXIT, FT and VT methods. Furthermore, we extend the JJ function, which describes mutual information as a function of variance, to fidelity and symbol error variance, the Rayleigh fading channel model and a channel estimate. ...

    Turbo multiuser detection with integrated channel estimation for differentially coded CDMA systems.

    Get PDF

    Self-concatenated coding for wireless communication systems

    No full text
    In this thesis, we have explored self-concatenated coding schemes that are designed for transmission over Additive White Gaussian Noise (AWGN) and uncorrelated Rayleigh fading channels. We designed both the symbol-based Self-ConcatenatedCodes considered using Trellis Coded Modulation (SECTCM) and bit-based Self- Concatenated Convolutional Codes (SECCC) using a Recursive Systematic Convolutional (RSC) encoder as constituent codes, respectively. The design of these codes was carried out with the aid of Extrinsic Information Transfer (EXIT) charts. The EXIT chart based design has been found an efficient tool in finding the decoding convergence threshold of the constituent codes. Additionally, in order to recover the information loss imposed by employing binary rather than non-binary schemes, a soft decision demapper was introduced in order to exchange extrinsic information withthe SECCC decoder. To analyse this information exchange 3D-EXIT chart analysis was invoked for visualizing the extrinsic information exchange between the proposed Iteratively Decoding aided SECCC and soft-decision demapper (SECCC-ID). Some of the proposed SECTCM, SECCC and SECCC-ID schemes perform within about 1 dB from the AWGN and Rayleigh fading channels’ capacity. A union bound analysis of SECCC codes was carried out to find the corresponding Bit Error Ratio (BER) floors. The union bound of SECCCs was derived for communications over both AWGN and uncorrelated Rayleigh fading channels, based on a novel interleaver concept.Application of SECCCs in both UltraWideBand (UWB) and state-of-the-art video-telephone schemes demonstrated its practical benefits.In order to further exploit the benefits of the low complexity design offered by SECCCs we explored their application in a distributed coding scheme designed for cooperative communications, where iterative detection is employed by exchanging extrinsic information between the decoders of SECCC and RSC at the destination. In the first transmission period of cooperation, the relay receives the potentially erroneous data and attempts to recover the information. The recovered information is then re-encoded at the relay using an RSC encoder. In the second transmission period this information is then retransmitted to the destination. The resultant symbols transmitted from the source and relay nodes can be viewed as the coded symbols of a three-component parallel-concatenated encoder. At the destination a Distributed Binary Self-Concatenated Coding scheme using Iterative Decoding (DSECCC-ID) was employed, where the two decoders (SECCC and RSC) exchange their extrinsic information. It was shown that the DSECCC-ID is a low-complexity scheme, yet capable of approaching the Discrete-input Continuous-output Memoryless Channels’s (DCMC) capacity.Finally, we considered coding schemes designed for two nodes communicating with each other with the aid of a relay node, where the relay receives information from the two nodes in the first transmission period. At the relay node we combine a powerful Superposition Coding (SPC) scheme with SECCC. It is assumed that decoding errors may be encountered at the relay node. The relay node then broadcasts this information in the second transmission period after re-encoding it, again, using a SECCC encoder. At the destination, the amalgamated block of Successive Interference Cancellation (SIC) scheme combined with SECCC then detects and decodes the signal either with or without the aid of a priori information. Our simulation results demonstrate that the proposed scheme is capable of reliably operating at a low BER for transmission over both AWGN and uncorrelated Rayleigh fading channels. We compare the proposed scheme’s performance to a direct transmission link between the two sources having the same throughput

    PCCC MC-CDMA COMBINATION PERFORMANCE OVER MULTIPATH RAYLEIGH FADING CHANNEL

    Get PDF
    his work presents the simulation of a Parallel Concatenation Convolution Coding PCCC with Multi-Carrier Code Division Multiple Access (MC-CDMA) system over multipath fading channels with a comparison with the uncoded data and that uses Serial Concatenated Convolutional Coding SCCC. The decoding technique used in the simulation was iterative decoding since it gives maximum efficiency with six iteration. Modulation schemes that used are Phase Shift Keying (BPSK, QPSK and 16 PSK), along with the Orthogonal Frequency Division Multiplexing (OFDM). The channel models used are as specified in the Third Generation Partnership Project (3GPP) Technical Specification TS 25.101 v2.10 with a channel bandwidth of 5 MHz.It was noticed that there is an improvement in the performance of the use of the PCCC data over the SCCC and uncoded data of SNR by many dBs as summarized in table [2] but with 8 and 16 PSK modulation schemes with the multipath fading channel a convergence of the BER to 10 cannot be obtained and it remains fluctuating around BER of 10-

    Turbo Multiuser Detection Architectures

    Get PDF
    The discovery of Turbo Codes in 1996 by Berrou et. al. proved to be a huge boost for the research of channel coding. The Turbo Principle behind turbo codes was found to be applicable in other areas. One of these areas is Multiuser Detection. In this thesis, Turbo Multiuser Detection is investigated in order to answer two main questions. The questions concern the performance gain that is obtained when turbo multiuser detection is used instead of non-turbo multiuser detection and the convergence behavior of turbo multiuser detection. The performance gain is determined by comparing the bit-error-rate (BER) chart of a turbo multiuser detection architecture with the BER chart of a non-turbo multiuser detector. It was found that turbo multiuser detection results in a dramatical performance gain when Eb/N0 > 3 dB and more than one iteration is performed. The convergence behavior of turbo multiuser detection is analyzed with the help of EXIT charts. EXIT charts are recently proposed by S. ten Brink as a tool to analyze the convergence behavior of turbo architectures. EXIT charts are discussed in this thesis. An EXIT chart of a turbo multiuser detection architecture is created. From this chart, the minimum number of iterations to obtain the lowest BER possible are found.\ud EXIT charts are also used to analyze the difference of iterating aposteriori and extrinsic information in a turbo architecture. The analysis shows that EXIT charts of a-posteriori information give results, which contradict the results of simulations on turbo architectures

    Coherent receiver design and analysis for interleaved division multiple access (IDMA)

    Get PDF
    This thesis discusses a new multiuser detection technique for cellular wireless communications. Multiuser communications is critical in cellular systems as multiple terminals (users) transmit to base stations (or wireless infrastructure). Efficient receiver methods are needed to maximise the performance of these links and maximise overall throughput and coverage while minimising inter-cell interference. Recently a new technique, Interleave-Division Multiple Access (IDMA), was developed as a variant of direct-sequence code division multiple access (DS-CDMA). In this new scheme users are separated by user specific interleavers, and each user is allocated a low rate code. As a result, the bandwidth expansion is devoted to the low rate code and not weaker spreading codes. IDMA has shown to have significant performance gains over traditional DS-CDMA with a modest increase in complexity. The literature on IDMA primarily focuses on the design of low rate forward error correcting (FEC) codes, as well as channel estimation. However, the practical aspects of an IDMA receiver such as timing acquisition, tracking, block asynchronous detection, and cellular analysis are rarely studied. The objective of this thesis is to design and analyse practical synchronisation, detection and power optimisation techniques for IDMA systems. It also, for the first time, provides a novel analysis and design of a multi-cell system employing a general multiuser receiver. These tools can be used to optimise and evaluate the performance of an IDMA communication system. The techniques presented in this work can be easily employed for DS-CDMA or other multiuser receiver designs with slight modification. Acquisition and synchronisation are essential processes that a base-station is required to perform before user's data can be detected and decoded. For high capacity IDMA systems, which can be heavily loaded and operate close to the channel capacity, the performance of acquisition and tracking can be severely affected by multiple access interference as well as severe drift. This thesis develops acquisition and synchronisation algorithms which can cope with heavy multiple access interference as well as high levels of drift. Once the timing points have been estimated for an IDMA receiver the detection and decoding process can proceed. An important issue with uplink systems is the alignment of frame boundaries for efficient detection. This thesis demonstrates how a fully asynchronous system can be modelled for detection. This thesis presents a model for the frame asynchronous IDMA system, and then develops a maximum likelihood receiver for the proposed system. This thesis develops tools to analyse and optimise IDMA receivers. The tools developed are general enough to be applied to other multiuser receiver techniques. The conventional EXIT chart analysis of unequal power allocated multiuser systems use an averaged EXIT chart analysis for all users to reduce the complexity of the task. This thesis presents a multidimensional analysis for power allocated IDMA, and shows how it can be utilised in power optimisation. Finally, this work develops a novel power zoning technique for multicell multiuser receivers using the optimised power levels, and illustrates a particular example where there is a 50% capacity improvement using the proposed scheme. -- provided by Candidate

    Self-concatenated code design and its application in power-efficient cooperative communications

    No full text
    In this tutorial, we have focused on the design of binary self-concatenated coding schemes with the help of EXtrinsic Information Transfer (EXIT) charts and Union bound analysis. The design methodology of future iteratively decoded self-concatenated aided cooperative communication schemes is presented. In doing so, we will identify the most important milestones in the area of channel coding, concatenated coding schemes and cooperative communication systems till date and suggest future research directions
    corecore