1,536 research outputs found

    Deep learning applications in coronary anatomy imaging:a systematic review and meta-analysis

    Get PDF
    Background: The application of deep learning on medical imaging is growing in prevalence in the recent literature. One of the most studied areas is coronary artery disease (CAD). Imaging of coronary artery anatomy is fundamental, which has led to a high number of publications describing a variety of techniques. The aim of this systematic review is to review the evidence behind the accuracy of deep learning applications in coronary anatomy imaging. Methods: The search for the relevant studies, which applied deep learning on coronary anatomy imaging, was performed in a systematic approach on MEDLINE and EMBASE databases, followed by reviewing of abstracts and full texts. The data from the final studies was retrieved using data extraction forms. A meta-analysis was performed on a subgroup of studies, which looked at fractional flow reserve (FFR) prediction. Heterogeneity was tested using tau2, I2 and Q tests. Finally, a risk of bias was performed using Quality Assessment of Diagnostic Accuracy Studies (QUADAS) approach. Results: A total of 81 studies met the inclusion criteria. The most common imaging modality was coronary computed tomography angiography (CCTA) (58%) and the most common deep learning method was convolutional neural network (CNN) (52%). The majority of studies demonstrated good performance metrics. The most common outputs were focused on coronary artery segmentation, clinical outcome prediction, coronary calcium quantification and FFR prediction, and most studies reported area under the curve (AUC) of ≥80%. The pooled diagnostic odds ratio (DOR) derived from 8 studies looking at FFR prediction using CCTA was 12.5 using the Mantel-Haenszel (MH) method. There was no significant heterogeneity amongst studies according to Q test (P=0.2496). Conclusions: Deep learning has been used in many applications on coronary anatomy imaging, most of which are yet to be externally validated and prepared for clinical use. The performance of deep learning, especially CNN models, proved to be powerful and some applications have already translated into medical practice, such as computed tomography (CT)-FFR. These applications have the potential to translate technology into better care of CAD patients.</p

    Explainable artificial intelligence (XAI) in deep learning-based medical image analysis

    Get PDF
    With an increase in deep learning-based methods, the call for explainability of such methods grows, especially in high-stakes decision making areas such as medical image analysis. This survey presents an overview of eXplainable Artificial Intelligence (XAI) used in deep learning-based medical image analysis. A framework of XAI criteria is introduced to classify deep learning-based medical image analysis methods. Papers on XAI techniques in medical image analysis are then surveyed and categorized according to the framework and according to anatomical location. The paper concludes with an outlook of future opportunities for XAI in medical image analysis.Comment: Submitted for publication. Comments welcome by email to first autho

    Recent Progress in Transformer-based Medical Image Analysis

    Full text link
    The transformer is primarily used in the field of natural language processing. Recently, it has been adopted and shows promise in the computer vision (CV) field. Medical image analysis (MIA), as a critical branch of CV, also greatly benefits from this state-of-the-art technique. In this review, we first recap the core component of the transformer, the attention mechanism, and the detailed structures of the transformer. After that, we depict the recent progress of the transformer in the field of MIA. We organize the applications in a sequence of different tasks, including classification, segmentation, captioning, registration, detection, enhancement, localization, and synthesis. The mainstream classification and segmentation tasks are further divided into eleven medical image modalities. A large number of experiments studied in this review illustrate that the transformer-based method outperforms existing methods through comparisons with multiple evaluation metrics. Finally, we discuss the open challenges and future opportunities in this field. This task-modality review with the latest contents, detailed information, and comprehensive comparison may greatly benefit the broad MIA community.Comment: Computers in Biology and Medicine Accepte

    Recent Advances in Machine Learning Applied to Ultrasound Imaging

    Get PDF
    Machine learning (ML) methods are pervading an increasing number of fields of application because of their capacity to effectively solve a wide variety of challenging problems. The employment of ML techniques in ultrasound imaging applications started several years ago but the scientific interest in this issue has increased exponentially in the last few years. The present work reviews the most recent (2019 onwards) implementations of machine learning techniques for two of the most popular ultrasound imaging fields, medical diagnostics and non-destructive evaluation. The former, which covers the major part of the review, was analyzed by classifying studies according to the human organ investigated and the methodology (e.g., detection, segmentation, and/or classification) adopted, while for the latter, some solutions to the detection/classification of material defects or particular patterns are reported. Finally, the main merits of machine learning that emerged from the study analysis are summarized and discussed. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Deep Learning in Cardiac Magnetic Resonance Image Analysis and Cardiovascular Disease Diagnosis

    Get PDF
    Cardiovascular diseases (CVDs) are the leading cause of death in the world, accounting for 17.9 million deaths each year, 31\% of all global deaths. According to the World Health Organisation (WHO), this number is expected to rise to 23 million by 2030. As a noninvasive technique, medical imaging with corresponding computer vision techniques is becoming more and more popular for detecting, understanding, and analysing CVDs. With the advent of deep learning, there are significant improvements in medical image analysis tasks (e.g. image registration, image segmentation, mesh reconstruction from image), achieving much faster and more accurate registration, segmentation, reconstruction, and disease diagnosis. This thesis focuses on cardiac magnetic resonance images, systematically studying critical tasks in CVD analysis, including image registration, image segmentation, cardiac mesh reconstruction, and CVD prediction/diagnosis. We first present a thorough review of deep learning-based image registration approaches, and subsequently, propose a novel solution to the problem of discontinuity-preserving intra-subject cardiac image registration, which is generally ignored in previous deep learning-based registration methods. On the basis of this, a joint segmentation and registration framework is further proposed to learn the joint relationship between these two tasks, leading to better registration and segmentation performance. In order to characterise the shape and motion of the heart in 3D, we present a deep learning-based 3D mesh reconstruction network that is able to recover accurate 3D cardiac shapes from 2D slice-wise segmentation masks/contours in a fast and robust manner. Finally, for CVD prediction/diagnosis, we design a multichannel variational autoencoder to learn the joint latent representation of the original cardiac image and mesh, resulting in a shape-aware image representation (SAIR) that serves as an explainable biomarker. SAIR has been shown to outperform traditional biomarkers in the prediction of acute myocardial infarction and the diagnosis of several other CVDs, and can supplement existing biomarkers to improve overall predictive performance

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis
    corecore