300 research outputs found

    Two essays in computational optimization: computing the clar number in fullerene graphs and distributing the errors in iterative interior point methods

    Get PDF
    Fullerene are cage-like hollow carbon molecules graph of pseudospherical sym- metry consisting of only pentagons and hexagons faces. It has been the object of interest for chemists and mathematicians due to its widespread application in various fields, namely including electronic and optic engineering, medical sci- ence and biotechnology. A Fullerene molecular, Γ n of n atoms has a multiplicity of isomers which increases as N iso ∼ O(n 9 ). For instance, Γ 180 has 79,538,751 isomers. The Fries and Clar numbers are stability predictors of a Fullerene molecule. These number can be computed by solving a (possibly N P -hard) combinatorial optimization problem. We propose several ILP formulation of such a problem each yielding a solution algorithm that provides the exact value of the Fries and Clar numbers. We compare the performances of the algorithm derived from the proposed ILP formulations. One of this algorithm is used to find the Clar isomers, i.e., those for which the Clar number is maximum among all isomers having a given size. We repeated this computational experiment for all sizes up to 204 atoms. In the course of the study a total of 2 649 413 774 isomers were analyzed.The second essay concerns developing an iterative primal dual infeasible path following (PDIPF) interior point (IP) algorithm for separable convex quadratic minimum cost flow network problem. In each iteration of PDIPF algorithm, the main computational effort is solving the underlying Newton search direction system. We concentrated on finding the solution of the corresponding linear system iteratively and inexactly. We assumed that all the involved inequalities can be solved inexactly and to this purpose, we focused on different approaches for distributing the error generated by iterative linear solvers such that the convergences of the PDIPF algorithm are guaranteed. As a result, we achieved theoretical bases that open the path to further interesting practical investiga- tion

    Exponentially many perfect matchings in cubic graphs

    Full text link
    We show that every cubic bridgeless graph G has at least 2^(|V(G)|/3656) perfect matchings. This confirms an old conjecture of Lovasz and Plummer. This version of the paper uses a different definition of a burl from the journal version of the paper and a different proof of Lemma 18 is given. This simplifies the exposition of our arguments throughout the whole paper

    Asymptotically cylindrical Calabi-Yau 3-folds from weak Fano 3-folds

    Get PDF
    We prove the existence of asymptotically cylindrical (ACyl) Calabi-Yau 3-folds starting with (almost) any deformation family of smooth weak Fano 3-folds. This allow us to exhibit hundreds of thousands of new ACyl Calabi-Yau 3-folds; previously only a few hundred ACyl Calabi-Yau 3-folds were known. We pay particular attention to a subclass of weak Fano 3-folds that we call semi-Fano 3-folds. Semi-Fano 3-folds satisfy stronger cohomology vanishing theorems and enjoy certain topological properties not satisfied by general weak Fano 3-folds, but are far more numerous than genuine Fano 3-folds. Also, unlike Fanos they often contain P^1s with normal bundle O(-1) + O(-1), giving rise to compact rigid holomorphic curves in the associated ACyl Calabi-Yau 3-folds. We introduce some general methods to compute the basic topological invariants of ACyl Calabi-Yau 3-folds constructed from semi-Fano 3-folds, and study a small number of representative examples in detail. Similar methods allow the computation of the topology in many other examples. All the features of the ACyl Calabi-Yau 3-folds studied here find application in arXiv:1207.4470 where we construct many new compact G_2-manifolds using Kovalev's twisted connected sum construction. ACyl Calabi-Yau 3-folds constructed from semi-Fano 3-folds are particularly well-adapted for this purpose.Comment: 107 pages, 1 figure. v3: minor corrections, changed formattin

    Subject Index Volumes 1–200

    Get PDF

    Positive del Pezzo Geometry

    Full text link
    Real, complex, and tropical algebraic geometry join forces in a new branch of mathematical physics called positive geometry. We develop the positive geometry of del Pezzo surfaces and their moduli spaces, viewed as very affine varieties. Their connected components are derived from polyhedral spaces with Weyl group symmetries. We study their canonical forms and scattering amplitudes, and we solve the likelihood equations.Comment: 34 pages, 4 figure

    Structural Analysis Algorithms for Nanomaterials

    Get PDF
    corecore