5,527 research outputs found

    Coral classification with hybrid feature representations

    Get PDF
    © 2016 IEEE. Coral reefs exhibit significant within-class variations, complex between-class boundaries and inconsistent image clarity. This makes coral classification a challenging task. In this paper, we report the application of generic CNN representations combined with hand-crafted features for coral reef classification to take advantage of the complementary strengths of these representation types. We extract CNN based features from patches centred at labelled pixels at multiple scales. We use texture and color based hand-crafted features extracted from the same patches to complement the CNN features. Our proposed method achieves a classification accuracy that is higher than the state-of-art methods on the MLC benchmark dataset for corals

    Sparse Coral Classification Using Deep Convolutional Neural Networks

    Get PDF
    Autonomous repair of deep-sea coral reefs is a recent proposed idea to support the oceans ecosystem in which is vital for commercial fishing, tourism and other species. This idea can be operated through using many small autonomous underwater vehicles (AUVs) and swarm intelligence techniques to locate and replace chunks of coral which have been broken off, thus enabling re-growth and maintaining the habitat. The aim of this project is developing machine vision algorithms to enable an underwater robot to locate a coral reef and a chunk of coral on the seabed and prompt the robot to pick it up. Although there is no literature on this particular problem, related work on fish counting may give some insight into the problem. The technical challenges are principally due to the potential lack of clarity of the water and platform stabilization as well as spurious artifacts (rocks, fish, and crabs). We present an efficient sparse classification for coral species using supervised deep learning method called Convolutional Neural Networks (CNNs). We compute Weber Local Descriptor (WLD), Phase Congruency (PC), and Zero Component Analysis (ZCA) Whitening to extract shape and texture feature descriptors, which are employed to be supplementary channels (feature-based maps) besides basic spatial color channels (spatial-based maps) of coral input image, we also experiment state-of-art preprocessing underwater algorithms for image enhancement and color normalization and color conversion adjustment. Our proposed coral classification method is developed under MATLAB platform, and evaluated by two different coral datasets (University of California San Diego's Moorea Labeled Corals, and Heriot-Watt University's Atlantic Deep Sea).Comment: Thesis Submitted for the Degree of MSc Erasmus Mundus in Vision and Robotics (VIBOT 2014

    Recent Advances in Transfer Learning for Cross-Dataset Visual Recognition: A Problem-Oriented Perspective

    Get PDF
    This paper takes a problem-oriented perspective and presents a comprehensive review of transfer learning methods, both shallow and deep, for cross-dataset visual recognition. Specifically, it categorises the cross-dataset recognition into seventeen problems based on a set of carefully chosen data and label attributes. Such a problem-oriented taxonomy has allowed us to examine how different transfer learning approaches tackle each problem and how well each problem has been researched to date. The comprehensive problem-oriented review of the advances in transfer learning with respect to the problem has not only revealed the challenges in transfer learning for visual recognition, but also the problems (e.g. eight of the seventeen problems) that have been scarcely studied. This survey not only presents an up-to-date technical review for researchers, but also a systematic approach and a reference for a machine learning practitioner to categorise a real problem and to look up for a possible solution accordingly

    Automatic Hierarchical Classification of Kelps utilizing Deep Residual Feature

    Get PDF
    Across the globe, remote image data is rapidly being collected for the assessment of benthic communities from shallow to extremely deep waters on continental slopes to the abyssal seas. Exploiting this data is presently limited by the time it takes for experts to identify organisms found in these images. With this limitation in mind, a large effort has been made globally to introduce automation and machine learning algorithms to accelerate both classification and assessment of marine benthic biota. One major issue lies with organisms that move with swell and currents, like kelps. This paper presents an automatic hierarchical classification method (local binary classification as opposed to the conventional flat classification) to classify kelps in images collected by autonomous underwater vehicles. The proposed kelp classification approach exploits learned feature representations extracted from deep residual networks. We show that these generic features outperform the traditional off-the-shelf CNN features and the conventional hand-crafted features. Experiments also demonstrate that the hierarchical classification method outperforms the traditional parallel multi-class classifications by a significant margin (90.0% vs 57.6% and 77.2% vs 59.0%) on Benthoz15 and Rottnest datasets respectively. Furthermore, we compare different hierarchical classification approaches and experimentally show that the sibling hierarchical training approach outperforms the inclusive hierarchical approach by a significant margin. We also report an application of our proposed method to study the change in kelp cover over time for annually repeated AUV surveys.Comment: MDPI Sensor

    Deep Visual Unsupervised Domain Adaptation for Classification Tasks:A Survey

    Get PDF
    • …
    corecore