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CORAL CLASSIFICATION WITH HYBRID FEATURE REPRESENTATIONS
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? The University of Western Australia †Murdoch University ∓ University of Edinburgh

ABSTRACT

Coral reefs exhibit significant within-class variations, complex
between-class boundaries and inconsistent image clarity. This
makes coral classification a challenging task. In this paper, we
report the application of generic CNN representations combined
with hand-crafted features for coral reef classification to take advan-
tage of the complementary strengths of these representation types.
We extract CNN based features from patches centred at labelled pix-
els at multiple scales. We use texture and color based hand-crafted
features extracted from the same patches to complement the CNN
features. Our proposed method achieves a classification accuracy
that is higher than the state-of-art methods on the MLC benchmark
dataset for corals.

Index Terms— corals, deep learning, marine images,classification

1. INTRODUCTION

Coral reefs are vital to marine ecology. Recently, a decline in the
health and abundance of coral reefs has been reported [1]. Under-
water imaging techniques such as autonomous underwater vehicles
(AUV) [2] and towed diver sleds [3] have tremendously increased
the amount of coral reef data available for analysis. However, the
process of manually annotating this data is cumbersome and inef-
ficient. Automatic underwater image classification is a challenging
task because the class boundaries are ambiguous and difficult to de-
fine in terms of color, shape or texture. Furthermore, water turbidity
and underwater illumination render the images difficult to analyse
[4]. As a result, the well-known labelling techniques such as bound-
ing boxes, boundary segmentation and whole image labelling cannot
be applied. Instead, marine scientists usually adopt point annotations
in practice.

Moreover, a major bottleneck in coral classification is the in-
herent imbalance of the classes in the datasets due to the abundant
presence of non-coral elements such as Crustose Coralline Algae
(CCA), turf algae, macroalgae and sand [4]. We have selected the
Moorea Labelled Coral (MLC) dataset as it is an excellent bench-
marking dataset in coral classification. A sample image from the
dataset is shown in Fig. 1. Coral classification can be regarded as a
fine-grained classification problem as we want to classify within the
sub-categories of corals.

In the recent years, the generic image descriptors extracted from
Convolutional Neural Networks (CNN) [5] have replaced the tradi-
tional hand crafted features in most of the classification tasks [6].
Image representations extracted from deep CNNs trained on a large
dataset such as ImageNet [7] have shown unprecedented successes in
diverse classification, localization and recognition tasks [8, 9, 10, 6].
Deep CNNs have a fixed input image size (i.e. 224× 224). It is im-
portant to efficiently resize the input data without information loss
when it comes to using CNN based image representations for clas-
sification. Multi-scale spatial pooling makes the CNNs more robust

Fig. 1. A sample image from the MLC dataset [4] showing randomly
labelled points. The small triangles show non-coral classes, and the
small circles represent coral classes.

to different image sizes and has shown to produce a better perfor-
mance than cropping and warping the input images [11, 12]. How-
ever, due to different annotation techniques in coral images, deep
features have not yet been used for the coral reef classification
problem. In practice, marine ecologists prefer random point sam-
pling for ground truth annotations [4]. In this case, random pixels are
chosen from the image and are labelled by experts manually. There-
fore, the CNN features with spatial pooling cannot be used directly
in coral image classification since pixel (instead of bounding box)
annotations are usually provided in coral image database.

To make the point-annotated marine data compatible with the
input constraints of CNNs, we propose a novel feature extraction
scheme based on the Spatial Pyramid Pooling (SPP) [11] approach.
Unlike SPP, our approach is local in nature and we call it local-SPP.
This approach is able to deal with point annotations and class imbal-
ance effectively (Sec. 4).

CNN features learn the image representation given a large
amount of training data, while hand crafted features such as SIFT
[13] and HoG [14] encode the local patch information about the
data. Both of these types of features encode different aspects of the
data and hence complement each other. Hand-crafted features are
application-dependent and do not require a large number of labelled
training data. Furthermore, hand-crafted features commonly encode
only one aspect of the data (i.e. color, texture, shape) at a time. On
the other hand, CNN based features are domain independent, com-
putationally more expensive in training and require a lot of labelled
data.



Off-the-shelf CNN features have shown their promise in diverse
classification and object detection problems. The main question is
whether CNN based features contain sufficient information for coral
classification. Deep CNNs are trained on very large datasets such
as ImageNet [7] whose images are quite different from the images
of the coral datasets in shape and texture. Also, the available coral
datasets are not large enough to train a deep CNN for feature extrac-
tion from scratch. CNN features learn the representation of data in a
supervised fashion independently of the domain area, whereas hand-
crafted features encode domain pertinent attributes of data. More-
over, hand-crafted features have shown state-of-art performance for
underwater scene classification (Sec. 2). Based on these observa-
tions, we propose to combine these two types of features to enhance
performance. Our experimental results (Sec. 4) demonstrate that a
combination of CNN and hand-crafted features can outperform their
individual performances for the coral classification problem.

The main contributions of this paper are: (1) the first use of
deep features extracted from the VGGNet [15] for coral classifica-
tion; (2) the introduction of a local Spatial Pyramid Pooling (SPP)
based technique to improve feature extraction from point annota-
tions; (3) the combination of CNN features with texton and color
based hand-crafted features for classification improvement.

2. RELATED WORK

For coral classification, researchers have relied on the extraction of
color and texture based hand-crafted features for image represen-
tation. Marcos et al. [16] used Normalized Chromaticity Coordi-
nate (NCC) for color and Local Binary Pattern (LBP) for texture,
followed by a 3-layer feed-forward back propagation neural net-
work. However, the NCC features turned out not to be discriminative
enough for some coral classes. Stokes and Deane [17] used an RGB
histogram and discrete cosine transform based feature vector along
with a k-nearest neighbour classifier for benthic coral images. This
method is quite fast but the weights of the color and texture features
are set manually. Pizaro et al. [18] used a feature vector based on
NCC histogram, SIFT bag of words and Gabor filter response. Their
classification was achieved through voting for the best matches. In
their method, each image is classified as one class and the sub-image
level classification is not addressed. Beijbom et al. [4] introduced
the MLC dataset and used a Maximum Response (MR) filter bank
followed by texton maps for feature extraction. They also showed
that extracting the features in the LAB color space gives a superior
performance compared to RGB. They used an SVM classifier with a
Radial Basis Function (RBF) kernel for classification.

Image representations extracted from deep CNNs trained on a
large dataset such as ImageNet [7] have shown to produce a promis-
ing performance for diverse classification and recognition tasks [8,
9, 10, 6]. Spatial pyramid pooling (SPP) [11] and Multi-scale Order-
less Pooling (MOP) [12] schemes have made CNNs independent of
the input image size and quite robust for diverse classification and
recognition applications.

3. PROPOSED METHOD

The proposed method includes four main steps which are demon-
strated in Fig. 2. Fig. 2a shows our proposed classification pipeline
for CNN based features whereas Fig. 2b shows the classification
pipeline for combined features. In this section, these pipelines are
described in detail.
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Fig. 2. Block diagram of the proposed method: (a) the pipeline for
CNN features; (b) the pipeline for the combined features.

3.1. CNN based feature extraction

Image representations extracted from CNNs trained on large datasets
and fine tuned on the domain specific dataset have shown state-of-art
performance in scene understanding problems [6]. Marine images in
general, and in particular coral reef images, are quite different in na-
ture from the images on which these CNN models are trained. Water
turbidity, depth of the imaged location, underwater illumination and
color correction are factors which make coral reef data more difficult
to classify. Also, marine ecologists prefer annotating the data using
pixel labels since the class boundaries are difficult to define.

We have used a pre-trained VGGNet [15] for feature extraction.
This network was pre-trained on ImageNet [7] which contains 1000
classes spanned over a million images. VGGnet (configuration D
[15]) consists of five convolutional layers and two fully connected
layers. Following the approach of [6], we have used the output of
the first fully connected layer as the feature vector in our work. The
weights of this CNN are then fine tuned using the MLC dataset.

3.2. Local Spatial Pyramid Pooling

VGGnet requries an input image of a fixed size i.e. 224 × 224. As
mentioned earlier, the MLC dataset has pixel annotations. We have
to manipulate these pixel annotations effectively to meet the input
size constraint of the CNN. To do so, we propose to extract square
patches of different sizes (multiples of 28) centred at each labelled
point (provided with the ground truth) of the MLC dataset. As a re-
sult, each image has roughly 200 patches with corresponding ground
truth labels. These patches are extracted at different scales to make
the feature representation scale invariant. Each patch captures the
details in the neighbourhood of a labelled point at a different scale.
Each patch is then resized to 224 × 224 and used as input to the
pre-trained VGGnet. The output of the first fully connected layer
of this network is used as a feature vector. The final feature vector
is obtained by max-pooling these feature vectors as shown in Fig.
3. The resulting feature vector represents the local features in the
neighbourhood of the respective pixel. Max-pooling enables us to
select the features that express themselves more in the neighbour-
hood of the corresponding pixel, independent of the scale at which
they are extracted.

Note that our patch extraction scheme is spatially pyramidal in
nature but it is essentially different from the spatial pyramid pool-
ing (SPP)[11] method. In SPP the whole image is divided into sub-
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Fig. 3. Local-SPP based feature extraction scheme.

patches and the features over each patch are pooled together to gen-
erate one feature representation for the full image. The SPP approach
is global in nature and hence the resulting feature vector encodes in-
formation of the whole image. However, we are also interested in
an efficient representation of the local neighbourhood of the labelled
pixel. In our approach, which we have termed ”local-SPP”, we do
not divide the whole image into sub-patches. Instead we extract the
patches at different scales centred around the labelled point. The fea-
ture vectors acquired from multi-scale patches are then max-pooled
together to find the maximum scale-invariant response. Therefore,
the resulting feature vector encodes the most prominent features in
the proximity of the corresponding pixel.

3.3. Combined features (CF)

Hand-crafted features are quite popular when it comes to marine data
analysis (Sec. 2). However, in the past few years, CNN features
have shown to outperform state-of-art hand crafted features for many
computer vision problems. CNN features are extracted from deep
networks that are trained on a large number of RGB images. Bei-
jbom et al. [4] showed that RGB color space is not effective enough
for the encoding of the color information of underwater imagery. To
alleviate this bottleneck, we propose to combine CNN features with
hand-crafted features to increase the classification performance. We
have used the color and texton based features of [4] for all of our
experiments (Sec. 4). The 4096-dimensional feature vector is con-
catenated with the 540-dimensional feature vector of [4] to obtain a
4636-dimensional combined feature vector.

3.4. Classifier

VGGnet is a very large network with approximately 140 million pa-
rameters [15]. Hence, it is not feasible to train it from random ini-
tializations since our dataset is quite small compared to ImageNet.
We therefore rely on pre-trained features [6]. For classification, we
use a two layer Multilayer Perceptron (MLP) network trained using
the MLC dataset. The architecture of this network is shown in Fig.
4. The MLP network consists of two fully connected layers followed
by a soft-max layer with 9 output classes. This network architecture
is similar to the fully connected portion of the VGGnet except that
the last layer has only 9 classes. The parameters a and b were op-
timized using the training data of experiment 1 (Sec. 4) since it has
the smallest training set. We used the same parameters for the other
two experiments.
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Fig. 4. The MLP architecture used for classification.

4. EXPERIMENTS AND RESULTS

4.1. Dataset

The MLC dataset [4] contains 2055 images collected over three
years: 2008, 2009 and 2010. It also contains random point an-
notation (x, y, label) for the nine most abundant labels, four non
coral labels: (1) Crustose Coralline Algae (CCA), (2) Turf algae,
(3) Macroalgae and (4) Sand, and five coral genera: (5) Acropora,
(6) Pavona, (7) Montipora, (8) Pocillopora, and (9) Porites. MLC
dataset contains 400,000 expert pixel annotations and an inherent
class imbalance, which makes it a challenging dataset.

4.2. Feature extraction

We use the output of the first fully connected layer of VGGnet as a
feature vector in all of our experiments. The input to the network
is resized to 224 × 224 pixels which gives an output feature vector
of 4096 dimensions. In our proposed method, we crop the patches
of sizes that are multiples of 28 centred at the labelled points (given
with the ground truth data). These patches are then resized to 224
x 224 pixels before using them as input to the VGGnet. We ex-
tracted patches of 4 different sizes for our experiments i.e., 28× 28,
56 × 56, 84 × 84 and 112 × 112. Since these patches are centred
around the point labels, the feature vector encodes the neighbour-
hood information at different scales. We proceed from a coarse to
fine representation as we reduce the patch size. When features at
different levels are max-pooled together, the feature vector encodes
the maximum responses in the neighbourhood of a pixel and retains
the best information independently of scale. This accounts for the
increase in the performance of the classifier for local-SPP features.

We evaluated the classification performance of our algorithm by
performing the same three experiments reported in [4]. In experi-
ment 1, the classifier is trained on two-thirds of the images from the
year 2008 and tested on the remaining images from the same year.
In experiment 2, the images from year 2008 are used for training
and the images from 2009 constitute the test set. In experiment 3,
the training set consists of images from the years 2008 and 2009,
whereas the test set consists of images from year 2010. The coral
reef was imaged using the same protocol over the three years.

4.3. Hand crafted features

Beijbom et al. [4] introduced an algorithm based on color and tex-
ture descriptors over multiple scales. They used a Maximum Re-
sponse (MR) filter bank along with the color information in the LAB
color space, followed by the extraction of texton maps at multiple
scales. Their algorithm performed better than other texture based
descriptors for coral classification. We have used their results as a
benchmark for our algorithm. The texton based feature vector ex-
tracted in this way are not linearly separable and hence they have
used an SVM classifier with a Radial Basis Function (RBF) kernel
for classification. To overcome the class imbalance problem, the



Features Exp 1 Exp 2 Exp 3

Hand-crafted features in RGB [4] 72.7 66 80.8
Hand-crafted features in LAB [4] 74.3 67.3 83.1

Local SPP + CNN features 77.4 69.2 82.8
Combined Features (CF) 77.9 70.1 84.5

# of Training Samples 87,428 131,260 263,372
# of Test Samples 43,832 132,112 129,927

Table 1. Overall classification accuracies for different feature rep-
resentations

training data was down-sampled and the cost function was assigned
a weight that is inversely proportional to the down-sampling rate.

4.4. Classification Results

Beijbom et al. [4] showed that pre-processing the coral images in
LAB color space gives a better performance than RGB, HSV and
gray color spaces. VGGnet is trained using a large number of RGB
images and hence cannot be used with LAB color-space. To over-
come this limitation, we combined the hand-crafted features of Bei-
jbom et al. with CNN features which results in a hybrid feature rep-
resentation. The 4096 dimensional CNN feature vector is concate-
nated with the 540 dimensional texton based feature vector to obtain
a combined feature vector. The individual feature vectors are nor-
malized prior to concatenation. The overall classification accuracies
are shown in Table 1. The accuracies for the hand-crafted features in
[4] are reported in the first two rows for RGB and LAB color-spaces
respectively. For the first two experiments, the local-SPP based CNN
features achieve a better performance compared with the respective
results of the first two rows. For the third experiment, the local-SPP
based CNN features produce a better performance only compared
to the RGB ones and perform slightly lower compared to the LAB
ones. It can be seen that the combined features approach outperforms
all the other approaches. The CF approach achieved an accuracy
of 77.9%, 70.1% and 84.5% in the three experiments (compared to
the corresponding 74.3%, 67.3% and 83.1% classification accuracy
in [4]). Furthermore, the combined features perform significantly
better than the local-SPP based CNN features when the classifier is
trained with a large amount of data (i.e. experiment 3). The last two
rows of Table 1 give the number of training and test samples used in
the corresponding experiment.

We also calculated the Average Class Precision (ACP) for our
experiments. ACP is the mean of the diagonal of a confusion matrix.
Higher ACP implies a better classification. Table 2 shows a com-
parison of ACP of our experiments with those of [4]. Our local-SPP
features and combined features have both a higher ACP than those
reported in [4]. The combined features performed the best. Our im-
proved classification accuracy and ACP demonstrates that the local-
SPP-based features and combined features addressed the problem
of class imbalance more effectively. In the case of corals, the most
abundant class overshadows the lesser classes when the patches are
extracted at one scale. Since we extract patches at different scales
and then max-pool them, this makes the less abundant classes more
prominent in the resulting feature vectors. This helps the classifier
to cope with the inherent class imbalance problem effectively.

4.5. Sub-classification within classes

There are three important sub-classification tasks within MLC
dataset: (1) the binary classification task between corals and non-
corals, (2) within coral classification i.e. if a pixel is classified as

Features Exp 1 Exp 2 Exp 3

Hand-crafted features in LAB [4] 0.60 0.56 0.60
Local SPP + CNN features 0.67 0.62 0.66
Combined Features (CF) 0.69 0.63 0.68

Table 2. Average class precision for different feature representations

Corals and Within Within
non-corals corals non-corals

Exp 1 [4] 92 97 78
Exp 1 [CF] 94 98 79

Exp 2 [4] 93 91 70
Exp 2 [CF] 95 92 72

Exp 3 [4] 95 97 87
Exp 3 [CF] 96 98 88

Table 3. Results for sub-classification tasks

coral, we need to find its coral type and (3) within non-corals i.e.
if a pixel is classified as a non-coral, we need to sub-classify it
within the non-coral classes. Table 3 shows the detailed results for
these sub-classification tasks using combined features and compares
them with the results of [4]. Our results show that CF approach
performs better than the baseline results of [4] for all experiments.
The improved diagonals of the confusion matrices of our method
foreshadowed the results of Table 3. Since CCA is present in abun-
dance, the last sub-classification task (i.e. within non-corals) is quite
challenging in itself. This fact accounts for the comparatively low
classification accuracies in the last column of Table 3.

5. CONCLUSION

In this work, we reported the first ever application of deep learning
to the coral reef classification problem. We proposed to use pre-
trained CNN representations extracted from VGGnet with a 2 layer
MLP classifier (trained with the MLC dataset) to address coral clas-
sification. We investigated the effectiveness of transferring the fea-
ture representations learned from deep CNNs trained on ImageNet to
coral reef data. We also introduced a local-SPP approach to extract
features at multiple scales to deal with the ambiguous class bound-
aries of corals. We then combined CNN based features with tex-
ton and color based hand-crafted features for a better classification
performance. Our experiments confirmed that our proposed method
achieved a state-of-art classification accuracy on the MLC dataset.
Furthermore, our method deals with the class imbalance problem ef-
fectively.
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